Patents by Inventor Dominik Paul

Dominik Paul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170363701
    Abstract: In a method and magnetic resonance apparatus for recording magnetic resonance data using a bSSFP sequence, a k-space line to be scanned in k-space is divided into at least two line sections, with at least two of the at least two line sections being scanned separately in different repetitions of the sequence.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 21, 2017
    Applicant: Siemens Healthcare GmbH
    Inventor: Dominik Paul
  • Patent number: 9846212
    Abstract: In a method and apparatus for magnetic resonance imaging, in order to improve saturation of magnetic resonance signals during an acquisition sequence, the acquisition sequence includes at least one acquisition cycle, that includes: a preparation pulse set with a number of preparation pulses, a saturation pulse set that is disjoint from the preparation pulse set, with a number of saturation pulses, and a readout block set with a number of readout blocks.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: December 19, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dominik Paul, Benjamin Schmitt
  • Patent number: 9841478
    Abstract: In a method and a control device for operating a magnetic resonance system by a pulse sequence that includes an excitation phase, material in an examination volume is excited by emission of an RF excitation pulse during a selection gradient pulse in a first gradient direction. RF refocusing pulses are then emitted and readout gradient pulses are activated in a second gradient direction for spatially coded acquisition of raw data of the examination volume along the second gradient direction. A prephasing gradient pulse is switched before a first RF refocusing pulse in the second gradient direction, and/or a rephaser gradient pulse is switched before an RF restore pulse, following the RF refocusing pulses, in the second gradient direction. The prephaser gradient pulse and/or the rephaser gradient pulse have lower slew rates than the readout gradient pulses.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 12, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Dominik Paul
  • Patent number: 9823321
    Abstract: In a method and apparatus for magnetic resonance imaging of an examination subject using an acquisition sequence that includes at least one acquisition cycle, wherein the acquisition cycle includes a readout block set with at least two readout blocks, and a saturation pulse set with at least two saturation pulses, the saturation pulses of the saturation pulse set are respectively associated with respective readout blocks of the readout block set, and the saturation pulses of the saturation pulse set have respectively varying flip angles.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: November 21, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: John Kirsch, Dominik Paul, Benjamin Schmitt
  • Publication number: 20170328966
    Abstract: In a magnetic resonance apparatus and a method for operation thereof, at least one electrical operating value of at least one predetermined component of the apparatus is captured and, as a function of the at least one operating value, at least one coil operating value of a transmitting coil arrangement of the magnetic resonance apparatus is controlled for the purpose of limiting a B1 value.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 16, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Bernd Erbe, Matthias Gebhardt, Juergen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stoecker, Markus Vester
  • Publication number: 20170328975
    Abstract: In trigger-adapted MR data acquisition, a trigger from the object undergoing investigation is detected, by which a periodically repeated procedure of the object is detected. An imaging sequence is performed multiple times dependent on the trigger in order to acquire MR data. The imaging sequence includes at least one preparation pulse and a subsequent readout module, the readout module ending a first time period before an end of the procedure. The respective imaging sequence is performed only if RR?RR(0)?(dRR?dRR(B1)), wherein dRR(B1) is a second time period, RR corresponds is a first time interval between a trigger that is currently being detected and a trigger that was detected immediately before the currently detected trigger, and RR(0) is a second time interval that corresponds to a predefined time interval between two directly succeeding triggers.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 16, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Andreas Greiser, Dominik Paul, Thorsten Speckner
  • Publication number: 20170322280
    Abstract: In a magnetic resonance (MR) apparatus and operating method, a first pulse sequence is executed in order to acquire echo signals from a target volume produced by radiation of a radio-frequency (RF) excitation pulse, thereby obtaining an original measurement dataset. A reference measurement dataset is then acquired by executing another pulse sequence immediately after acquisition of the aforementioned echo signals. These steps are repeated until the original measurement dataset has reached a predetermined degree of completeness that is still incomplete according to the Nyquist criterion. The original measurement dataset is then completed using the reference measurement dataset and a parallel acquisition technique.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 9, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Wilhelm Horger, Dominik Paul, Mario Zeller
  • Publication number: 20170315195
    Abstract: In a magnetic resonance (MR) apparatus and an operating method therefor, a sequence with which the MR data are to be recorded is created in or provided to a control computer of the MR apparatus. A maximum RF output and a maximum gradient performance of the scanner magnetic resonance apparatus during the performance of the sequence are determined by simulating or analyzing the performance of the sequence in the control computer, and it is verified whether the maximum RF output and/or the maximum gradient performance violate predetermined limit values. Execution of the sequence to record the MR data is performed only if the verification showed that the limit values are not violated.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 2, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Juergen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stoecker, Markus Vester
  • Patent number: 9804247
    Abstract: In a method and a magnetic resonance system to acquire MR data of a slice of a volume segment within an examination subject, a slice selection gradient is activated along a first direction that is orthogonal to the slice. An RF excitation pulse is radiated for selective excitation of the slice, a first phase coding gradient is activated along the first direction, and a second phase coding gradient is activated along a second direction. The second direction is orthogonal to the first direction. A readout gradient is activated along a third direction that is orthogonal to the first direction and the second direction. MR data are acquired while the readout gradient is activated. A number of phase coding steps for the second phase coding gradient is determined depending on the first phase coding gradient.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: October 31, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Dominik Paul
  • Patent number: 9804241
    Abstract: In a method and apparatus for magnetic resonance imaging, in order to enable improved saturation of magnetic resonance signals during an acquisition sequence, the acquisition sequence includes a readout block set with multiple readout blocks, a readout saturation pulse set with multiple readout saturation pulses, and an intermediate saturation pulse set with one or more intermediate saturation pulses, wherein the readout saturation pulse set is disjoint from the intermediate saturation pulse set, at least one readout block of the readout block set includes a readout saturation pulse of the readout saturation pulse set, and at least one intermediate saturation pulse of the intermediate saturation pulse set takes place between two successive readout blocks of the readout block set.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 31, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Miriam Keil, Dominik Paul
  • Publication number: 20170299667
    Abstract: A method for operating a magnetic resonance apparatus by a safety unit, taking into account persons fitted with an implant, a safety unit, a safety system, a magnetic resonance apparatus, and a computer program product are provided. The magnetic resonance apparatus includes a first part and a second part. The first part is operated separately from the second part and includes the safety unit. During an examination of a person fitted with an implant, the safety unit checks that the magnetic resonance apparatus, in a restricted operating mode, is complying with implant-conformant limit values.
    Type: Application
    Filed: April 15, 2017
    Publication date: October 19, 2017
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Jürgen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stöcker, Markus Vester, Swen Campagna
  • Patent number: 9784812
    Abstract: In a method to associate k-space lines with echo trains of raw magnetic resonance data, parallel k-space lines orthogonally intersect a plane at respective intersection points. Each echo train has a trajectory length, and the k-space lines are associated with the echo trains such that a sum of trajectory lengths of all echo trains is minimal. The trajectory length TL of an echo train is defined by TL = ? i = 1 L - 1 ? ? P i ? P i + 1 _ wherein L is a sequence of k-space lines, Pi is an intersection point of the i-th k-space line of the echo train with the plane; and PiPi+1 is the length of the path from the i-th intersection point to the (i+1)-th intersection point.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: October 10, 2017
    Assignees: Siemens Aktiengesellschaft, Albert-Ludwigs-Universität Freiburg
    Inventors: Guobin Li, Esther Meyer, Dominik Paul
  • Patent number: 9778337
    Abstract: In a method and magnetic resonance (MR) system to acquire MR data in a predetermined volume segment of an examination subject, the data are acquired with at least one echo train that includes at least two signal echoes. The same number of echoes is acquired for each echo train of the at least one echo train, with this number of echoes corresponding to an echo train length. The total number of echoes that are required to acquire the MR data and the echo train length is adapted so that the total number corresponds to a whole number multiple of the echo train length.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: October 3, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Dominik Paul
  • Publication number: 20170261586
    Abstract: In a method and apparatus for acquiring magnetic resonance data from a slice package composed of multiple measured slices as a target volume by executing a measuring sequence, prior to each scan of one of the measured slices, the measuring sequence includes a preparation pulse associated with the measured slice for signal suppression of a type of saturation molecule. This said preparation pulse acts on the entire target volume, and a pulse parameter of the preparation pulse is chosen for a measured slice group, composed of at least one measured slice, as a function of resonance information on the contiguous partial volume covered by the measured slice group.
    Type: Application
    Filed: March 9, 2017
    Publication date: September 14, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Dominik Paul
  • Publication number: 20170261587
    Abstract: In a method and apparatus for recording magnetic resonance (MR) data of a target region of a subject, the recording process is divided into subsections each follow the other after a repetition time. Before each recording of MR data of a subsection with a measurement sequence, an adiabatic preparatory pulse is activated that inverts the longitudinal magnetization of a saturation molecule type, from which no MR data are to be recorded. An excitation pulse is emitted spaced by an inversion time from the preparatory pulse. Before the first preparatory pulse, at least one adiabatic preparation pulse is emitted that inverts the longitudinal magnetization with a timing such that the longitudinal magnetization of the saturation molecule type at the time of the first preparatory pulse at a steady state value, which occurs again before the repetition time after each preparatory pulse.
    Type: Application
    Filed: March 13, 2017
    Publication date: September 14, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Dominik Paul
  • Patent number: 9739859
    Abstract: A method and control device operate a magnetic resonance system in order to execute a first pulse sequence that includes an excitation phase and an acquisition phase. In the excitation phase, a first gradient is applied in a gradient direction to generate a spatially dependent basic magnetic field. A selective radio-frequency excitation pulse is executed, wherein the selective radio-frequency excitation pulse excites a first material and does not excite a second material in a first partial region of an examination volume, and wherein the selective radio-frequency excitation pulse does not excite the first material and excites the second material in a second partial region of the examination volume. In the acquisition phase, non-selective refocusing pulses are executed in order to acquire raw data of the first and second partial region of the examination volume, which acquisition is spatially coded along the gradient direction.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: August 22, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Theresa Bachschmidt, Hans-Peter Fautz, Rene Gumbrecht, Dominik Paul
  • Publication number: 20170234953
    Abstract: In a magnetic resonance tomography scanner and an operating method therefor, a scanning volume is subdivided in a slice direction into multiple scanning slices, and the scan data of each of the scanning slices are acquired by a scan sequence allocated to the respective scanning slice. Each scan sequence has at least one preparation pulse allocated to the scanning slice, which causes nuclear spin excitation throughout the whole scanning volume. At least two scan sequences are implemented that differ with regard to a coil current fed during the preparation pulse to a field correction coil of the scanner for reducing a local inhomogeneity of a basic magnetic field, or that differ with regard to at least one pulse parameter of the preparation pulse. The respective coil current and/or pulse parameter is determined depending on the position of the scanning slice allocated to the respective scan sequence in the scanning volume.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 17, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Thorsten Feiweier, Dominik Paul
  • Publication number: 20170205485
    Abstract: In order to enable improved analysis of a magnetic resonance sequence, which provides a number of radio-frequency pulses for the acquisition of magnetic resonance measurement data of an object undergoing investigation by a magnetic resonance apparatus, the magnetic resonance sequence is provided to a computer and a first average radio-frequency output that is present during a first time window of the magnetic resonance sequence is determined. A second average radio-frequency output that is present during a second time window of the magnetic resonance sequence is determined. A value derived from the first average radio-frequency output and the second average radio-frequency output is provided from the computer.
    Type: Application
    Filed: January 18, 2017
    Publication date: July 20, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Andreas Greiser, Dominik Paul, Daniel Nico Splitthoff
  • Publication number: 20170199262
    Abstract: In a method and magnetic resonance (MR) apparatus, for an MR control sequence is activated that contains a large number of blocks that are to be activated successively, with a block of the blocks that are to be played successively having an excitation module for exciting spins in a first region of an examination object and an encoding module for spatial encoding of spins excited in the first region and for recording a signal emitted by spins excited in the first region. A sensor detects an external movement of the examination object during activation of an excitation module of a block. An optimization computer carries out an optimization of the encoding module of this block based on the detected external movement and generates an optimized encoding module. The optimized encoding module is activated.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 13, 2017
    Applicant: Siemens Healthcare GmbH
    Inventor: Dominik Paul
  • Patent number: 9702952
    Abstract: In a method and device for the determination of a magnetic resonance control sequence that includes at least one first pulse arrangement that acts in a spatially selective manner in a first selection direction and a subsequent second pulse arrangement that acts in a spatially selective manner in a second selection direction, viewing volume dimension parameter values are registered that define the spatial extent of a viewing volume to be excited. The first selection direction and the second selection direction are established automatically depending on a length ratio of the spatial extent of the viewing volume to be excited in the different selection directions.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: July 11, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Dominik Paul