Patents by Inventor Don Gunasekara

Don Gunasekara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968543
    Abstract: Methods and apparatus for providing quasi-licensed spectrum access within an area or venue. In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated by a Federal or commercial SAS (Spectrum Access System) to a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs and APs) in data communication with a controller. In one variant, the controller dynamically allocates (i) spectrum within the area or venue within CBRS bands, and (ii) MSO users or subscribers to CBRS bands or WLAN (e.g., public ISM) bands in to manage interference between the coexisting networks, and maximize user experience. In another variant, the controller cooperates with a provisioning server to implement a client device application program or “app” on MSO user or subscriber client devices which enables inter-RAT access.
    Type: Grant
    Filed: April 6, 2023
    Date of Patent: April 23, 2024
    Assignee: CHARTER COMMUNICATIONS OPERATING, LLC
    Inventors: Don Gunasekara, Umamaheswar Kakinada, Ahmed Bencheikh, Shane Newberg
  • Publication number: 20240031775
    Abstract: Apparatus and methods for providing information via an open-access network such as a wireless local area network (WLAN). In one embodiment, the information provided is contextually relevant to one or locations, more users or devices receiving the information. In one implementation, the information is provisioned by a network entity (for example, from a service provider network operator) and provided to one or more access points (APs) of the service provider network. The information is bit-stuffed into Wi-Fi beacon frames or other data structures that are broadcast by the APs to nearby client devices. A receiving client device extracts the information using a protocol embodied in application software on the client, and may also initiate a dedicated wireless connection with the AP for e.g., transmission of content related to the context and/or the bit-stuffed information, access of related Internet addresses, etc.
    Type: Application
    Filed: May 26, 2023
    Publication date: January 25, 2024
    Inventors: Don Gunasekara, Kiran Yeddala
  • Publication number: 20230262473
    Abstract: Methods and apparatus for providing quasi-licensed spectrum access within an area or venue. In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated by a Federal or commercial SAS (Spectrum Access System) to a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs and APs) in data communication with a controller. In one variant, the controller dynamically allocates (i) spectrum within the area or venue within CBRS bands, and (ii) MSO users or subscribers to CBRS bands or WLAN (e.g., public ISM) bands in to manage interference between the coexisting networks, and maximize user experience. In another variant, the controller cooperates with a provisioning server to implement a client device application program or “app” on MSO user or subscriber client devices which enables inter-RAT access.
    Type: Application
    Filed: April 6, 2023
    Publication date: August 17, 2023
    Inventors: Don Gunasekara, Umamaheswar Kakinada, Ahmed Bencheikh, Shane Newberg
  • Patent number: 11700030
    Abstract: Methods and apparatus for providing quasi-licensed spectrum access within a prescribed area or venue, including to users or subscribers of one or more Mobile Network Operators (MNOs). In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated by a Federal or commercial SAS (Spectrum Access System) to a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs) in data communication with a controller, and the core(s) of the MNO network(s). In one variant, the controller dynamically allocates (i) spectrum within the area or venue within CBRS bands, and (ii) MNO “roaming” users or subscribers to CBRS bands (e.g., via extant LTE-TD technology). In one particular implementation, the managed network comprises a Multiple Systems Operator (MSO) network such as a cable or satellite network, and the MSO and MNO coordinate to implement user-specific and/or data-specific policies for the roaming MNO subscribers.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: July 11, 2023
    Assignee: CHARTER COMMUNICATIONS OPERATING, LLC
    Inventors: Umamaheswar Kakinada, Don Gunasekara, Ahmed Bencheikh, Shane Newberg
  • Patent number: 11665610
    Abstract: Apparatus and methods for extending and enhancing wireless networks. An exemplary wireless network configured according to the disclosure uses in-service Wireless Network Clients (WNCs), such as mobile phones, laptops, etc., to extend and enhance the wireless network coverage via peer-to-peer sub-networks. In one implementation, each WNC is configured to operate as a Service Access Node (SAN) to other wireless client devices in the same network. The SAN provides peer-to-peer communications capabilities (to communicate with wireless clients) and gateway functionality (to aggregate data traffic over its own uplink communications), thereby enabling wireless clients to “piggyback” their data link onto the WNC. Peer Control Manager (PCM) software on each WNC enables, disables, and controls the service functions for that WNC in accordance with an overarching Peer Controller (PC) entity operated by an Access Point Controller/Core Network.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: May 30, 2023
    Assignee: TIME WARNER CABLE ENTERPRISES LLC
    Inventors: Kiran Yeddala, Don Gunasekara
  • Patent number: 11665509
    Abstract: Apparatus and methods for providing information via an open-access network such as a wireless local area network (WLAN). In one embodiment, the information provided is contextually relevant to one or locations, more users or devices receiving the information. In one implementation, the information is provisioned by a network entity (for example, from a service provider network operator) and provided to one or more access points (APs) of the service provider network. The information is bit-stuffed into Wi-Fi beacon frames or other data structures that are broadcast by the APs to nearby client devices. A receiving client device extracts the information using a protocol embodied in application software on the client, and may also initiate a dedicated wireless connection with the AP for e.g., transmission of content related to the context and/or the bit-stuffed information, access of related Internet addresses, etc.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: May 30, 2023
    Assignee: TIME WARNER CABLE ENTERPRISES LLC
    Inventors: Don Gunasekara, Kiran Yeddala
  • Patent number: 11632677
    Abstract: Methods and apparatus for providing quasi-licensed spectrum access within an area or venue. In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated by a Federal or commercial SAS (Spectrum Access System) to a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs and APs) in data communication with a controller. In one variant, the controller dynamically allocates (i) spectrum within the area or venue within CBRS bands, and (ii) MSO users or subscribers to CBRS bands or WLAN (e.g., public ISM) bands in to manage interference between the coexisting networks, and maximize user experience. In another variant, the controller cooperates with a provisioning server to implement a client device application program or “app” on MSO user or subscriber client devices which enables inter-RAT access.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: April 18, 2023
    Assignee: CHARTER COMMUNICATIONS OPERATING, LLC
    Inventors: Don Gunasekara, Umamaheswar Kakinada, Ahmed Bencheikh, Shane Newberg
  • Publication number: 20220286905
    Abstract: Methods and apparatus for monitoring and controlling access to coexisting first and second networks within a venue. In one embodiment, the first network is a managed content delivery network that includes one or more wireless access points (APs) in data communication with a backend controller which communicates with a dedicated background scanner. The background scanner scans for coexisting networks within the venue, and reports this to the controller. In one variant, the controller dynamically adjusts transmit characteristics of the AP(s) to manage interference between the coexisting networks. In another variant, the controller causes the energy detect threshold of a client device to be lowered so that the device may detect WLAN signals in a scenario where a coexisting RAT (for example, LTE-U or LTE-LAA) occupies the same channel and/or frequency.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 8, 2022
    Inventors: Don Gunasekara, Venkata Ramana Divvi, Ahmed Bencheikh
  • Patent number: 11412320
    Abstract: Wireless data network access architecture and methods enabling location-specific and/or user-specific provision of services or resources. In one embodiment, an end-user device makes a request for service within a wireless LAN (WLAN). A wireless access point (WAP) controller/policy server determines whether the user device meets criteria for a first user status or a second user status, and assigns the appropriate status to an identifier of the end-user device. When the user device is assigned the first user status, the user device is provided network access according to e.g., a first permissible bandwidth allocation. Otherwise, the user device is provided network access according to a second, different bandwidth allocation. The first and second user status may be assigned based on a location of the user device within e.g., a venue, a class of end-user device, end user application, an access pass associated with the user device, or yet other criteria.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: August 9, 2022
    Assignee: TIME WARNER CABLE ENTERPRISES LLC
    Inventor: Don Gunasekara
  • Patent number: 11375437
    Abstract: Instead of monitoring a wireless region for beacons, to learn of availability of different wireless access points in a particular geographical region, an end user-operated communication device generates a network discovery request message. The communication device initiates wireless broadcast of the network discovery request message from the user-operated communication device to any of one or more listening non-beacon-generating wireless access points in a wireless network environment. Each of the non-beacon generating wireless access points receiving the network discovery request message from the user-operated communication device produces a respective network discovery response message including network identity information (such as one or more SSIDs) associated with the respective non-beacon generating wireless access point.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: June 28, 2022
    Assignee: Time Warner Cable Enterprises LLC
    Inventors: Don Gunasekara, Laxman Nallani, Ahmed Bencheikh
  • Patent number: 11356819
    Abstract: Apparatus and methods for monitoring a wireless network such as a WLAN to characterize a venue or other area. In one embodiment, the network comprises a WLAN which includes one or more access points (APs) in data communication with a controller, which in turn communicates with managed network entities via a backhaul connection. The controller s is configured to monitor the operation of the network components including the APs, as well as one or more fixed or mobile sensors. In one variant, the sensors provide data relating to wireless signal performance at their current location, which can be provided to a cloud-based evaluation process for enhanced characterization of the venue in conjunction with the AP-derived data. In the exemplary embodiment, logic operative to run on the system includes automated seating allocation suggestions, thereby providing end users with a better quality experience.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: June 7, 2022
    Assignee: Charter Communications Operating, LLC
    Inventors: Don Gunasekara, Venkata Ramana Divvi, Ahmed Bencheikh
  • Patent number: 11350310
    Abstract: Methods and apparatus for monitoring and controlling access to coexisting first and second networks within a venue. In one embodiment, the first network is a managed content delivery network that includes one or more wireless access points (APs) in data communication with a backend controller which communicates with a dedicated background scanner. The background scanner scans for coexisting networks within the venue, and reports this to the controller. In one variant, the controller dynamically adjusts transmit characteristics of the AP(s) to manage interference between the coexisting networks. In another variant, the controller causes the energy detect threshold of a client device to be lowered so that the device may detect WLAN signals in a scenario where a coexisting RAT (for example, LTE-U or LTE-LAA) occupies the same channel and/or frequency.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: May 31, 2022
    Assignee: Charter Communications Operating, LLC
    Inventors: Don Gunasekara, Venkata Ramana Divvi, Ahmed Bencheikh
  • Publication number: 20220166459
    Abstract: Methods and apparatus for providing quasi-licensed spectrum access within a prescribed area or venue, including to users or subscribers of one or more Mobile Network Operators (MNOs). In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated by a Federal or commercial SAS (Spectrum Access System) to a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs) in data communication with a controller, and the core(s) of the MNO network(s). In one variant, the controller dynamically allocates (i) spectrum within the area or venue within CBRS bands, and (ii) MNO “roaming” users or subscribers to CBRS bands (e.g., via extant LTE-TD technology). In one particular implementation, the managed network comprises a Multiple Systems Operator (MSO) network such as a cable or satellite network, and the MSO and MNO coordinate to implement user-specific and/or data-specific policies for the roaming MNO subscribers.
    Type: Application
    Filed: November 29, 2021
    Publication date: May 26, 2022
    Inventors: Umamaheswar Kakinada, Don Gunasekara, Ahmed Bencheikh, Shane Newberg
  • Patent number: 11219026
    Abstract: Methods and apparatus for providing quasi-licensed spectrum access within an area or application so as to enable “end to end” IoT (Internet of Things) device connectivity. In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated by a Federal or commercial SAS (Spectrum Access System) to a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs (Citizens Broadband radio Service Devices) and IoT hubs or gateways) in data communication with a controller. In one variant, the controller dynamically allocates (i) spectrum within the area or venue within CBRS bands, and (ii) MSO (multiple systems operator) users or subscribers to CBRS bands or IoT (Internet of Things) bands (e.g., public ISM (industrial, scientific and medical)) bands to maximize connectivity and performance.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 4, 2022
    Assignee: Charter Communications Operating, LLC
    Inventors: Umamaheswar Kakinada, Don Gunasekara, Ahmed Bencheikh, Shane Newberg
  • Patent number: 11206665
    Abstract: A mesh network management resource receives connectivity status information indicating wireless connectivity amongst multiple wirelessly interconnected access points in a mesh network and multiple clients. Based on the received connectivity status information, the mesh network management resource allocates portions of wireless bandwidth in the mesh network to wirelessly communicate between a root access point in the mesh network and each of the multiple interconnected access points. The root access point transmits messages over the allocated portions of wireless bandwidth from the root access point through the multiple interconnected access points to the multiple clients. According to one configuration, the mesh network management resource allocates use of wireless bandwidth amongst the wirelessly interconnected access points in the mesh network based at least in part on class of service information assigned to different subscribers in the mesh network environment.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: December 21, 2021
    Assignee: Time Warner Cable Enterprises LLC
    Inventors: Don Gunasekara, Harriet DuBois, Kevin Caldwell, Laxman Nallani
  • Patent number: 11197050
    Abstract: Methods and apparatus for monitoring and controlling access to coexisting first and second networks, such as within a venue. In one embodiment, the first network is a managed network that includes wireless access points (APs) in data communication with a backend controller, which communicates with a client process on a user device. The client process uses indigenous radio technology of the user device to scan for coexisting networks, and report results to the controller. In one variant, the controller dynamically adjusts transmit characteristics of the AP(s) to manage interference between the coexisting networks. In another variant, the controller causes the energy detect threshold of the user device to be lowered so that it may detect WLAN signals when a coexisting RAT (for example, LTE-U or LTE-LAA) occupies the same channel and/or frequency. In another variant, the client process autonomously adjusts user device operation based on the scan.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: December 7, 2021
    Assignee: Charter Communications Operating, LLC
    Inventors: Don Gunasekara, Venkata Ramana Divvi, Ahmed Bencheikh
  • Patent number: 11190232
    Abstract: Methods and apparatus for providing quasi-licensed spectrum access within a prescribed area or venue, including to users or subscribers of one or more Mobile Network Operators (MNOs). In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated by a Federal or commercial SAS (Spectrum Access System) to a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs) in data communication with a controller, and the core(s) of the MNO network(s). In one variant, the controller dynamically allocates (i) spectrum within the area or venue within CBRS bands, and (ii) MNO “roaming” users or subscribers to CBRS bands (e.g., via extant LTE-TD technology). In one particular implementation, the managed network comprises a Multiple Systems Operator (MSO) network such as a cable or satellite network, and the MSO and MNO coordinate to implement user-specific and/or data-specific policies for the roaming MNO subscribers.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: November 30, 2021
    Assignee: Charter Communications Operating, LLC
    Inventors: Umamaheswar Kakinada, Don Gunasekara, Ahmed Bencheikh, Shane Newberg
  • Patent number: 11146470
    Abstract: Apparatus and methods for monitoring a wireless local area network (WLAN) to identify inoperative or degraded devices and restore network connectivity to end users. In one embodiment, the network includes one or more access points (APs) in data communication with a cable modem, which in turn communicates with managed network entities via a backhaul connection. Each AP is configured to provide connectivity to client devices, as well as monitor the operation of other network components including the cable modem, via logic indigenous to the AP, and invoke corrective action when failures or degraded performance is detected. In one variant, the logic operative to run on the AP includes both diagnostic and self-healing functionality, so as to enable at least partial automated diagnosis, localization, and recovery from faults, thereby obviating costly troubleshooting by the network operator or service personnel.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 12, 2021
    Assignee: Time Warner Cable Enterprises LLC
    Inventors: Don Gunasekara, Ahmed Bencheikh, Priyank Vira
  • Publication number: 20210227440
    Abstract: Apparatus and methods for extending and enhancing wireless networks. An exemplary wireless network configured according to the disclosure uses in-service Wireless Network Clients (WNCs), such as mobile phones, laptops, etc., to extend and enhance the wireless network coverage via peer-to-peer sub-networks. In one implementation, each WNC is configured to operate as a Service Access Node (SAN) to other wireless client devices in the same network. The SAN provides peer-to-peer communications capabilities (to communicate with wireless clients) and gateway functionality (to aggregate data traffic over its own uplink communications), thereby enabling wireless clients to “piggyback” their data link onto the WNC. Peer Control Manager (PCM) software on each WNC enables, disables, and controls the service functions for that WNC in accordance with an overarching Peer Controller (PC) entity operated by an Access Point Controller/Core Network.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 22, 2021
    Inventors: Kiran Yeddala, Don Gunasekara
  • Patent number: 10952118
    Abstract: Apparatus and methods for extending and enhancing wireless networks. An exemplary wireless network configured according to the disclosure uses in-service Wireless Network Clients (WNCs), such as mobile phones, laptops, etc., to extend and enhance the wireless network coverage via peer-to-peer sub-networks. In one implementation, each WNC is configured to operate as a Service Access Node (SAN) to other wireless client devices in the same network. The SAN provides peer-to-peer communications capabilities (to communicate with wireless clients) and gateway functionality (to aggregate data traffic over its own uplink communications), thereby enabling wireless clients to “piggyback” their data link onto the WNC. Peer Control Manager (PCM) software on each WNC enables, disables, and controls the service functions for that WNC in accordance with an overarching Peer Controller (PC) entity operated by an Access Point Controller/Core Network.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: March 16, 2021
    Assignee: Time Warner Cable Enterprises LLC
    Inventors: Kiran Yeddala, Don Gunasekara