Patents by Inventor Donald A. Lawson

Donald A. Lawson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9293802
    Abstract: A method, system, and device relating to a broad-band fragmented aperture tile and antenna system are disclosed. In one exemplary embodiment, an aperture tile comprises a plurality of unit cells. The plurality of unit cells individually comprise a driven radiating element layer, a module layer having a printed circuit board, wherein the module layer comprises one or more of a time delay module, a radio frequency distribution module, a radio frequency module, or a digital signal processor. Furthermore the aperture tile is coupled to a cold plate configured for heat transfer.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: March 22, 2016
    Assignee: ViaSat, Inc.
    Inventors: John Daniel Voss, Donald Lawson Runyon
  • Patent number: 9136578
    Abstract: In an example embodiment, an in-phase recombinant waveguide combiner/divider device can comprise: a single waveguide input; N waveguide outputs, wherein N is an integer greater than 2; a first waveguide dividing portion; a second waveguide dividing portion; a third waveguide dividing portion; and a waveguide combining portion. The waveguide combining portion can be configured to combine two signals that are each respectively received from the second waveguide dividing portion and third waveguide dividing portion. In general an in-phase recombinant waveguide combiner/divider can comprise more junctions than output ports of a conservative power divider network structure. In an example embodiment, for a N-way waveguide power divider, there can be at least N+1 waveguide junctions.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: September 15, 2015
    Assignee: VIASAT, INC.
    Inventors: Dominic Quang Nguyen, Donald Lawson Runyon, Anders Jensen
  • Patent number: 9065162
    Abstract: In an example embodiment, an in-phase H-plane T-junction can comprise: a first waveguide port; a second waveguide port; a third waveguide port, wherein the third waveguide port can be a common port; and an E-plane septum. The first, second, and third waveguide ports can be in the H-plane and can be each connected to each other in a T configuration. The T-junction can be configured such that microwave signals in a first band can be in-phase with each other at the first and second waveguide ports, and microwave signals in a second band can be in-phase with each other at the first and second waveguide ports. The H-plane T-junction can be at least one of a power combiner and a power divider.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: June 23, 2015
    Assignee: VIASAT, INC.
    Inventors: Donald Lawson Runyon, Dominic Quang Nguyen, Anders Jensen
  • Patent number: 8988300
    Abstract: In an example embodiment, an azimuth combiner comprises: a septum layer comprising a plurality of septum dividers; first and second housing layers attached to first and second sides of the septum layer; a linear array of ports on a first end of the combiner; wherein the first and second housing layers each comprise waveguide H-plane T-junctions; wherein the waveguide T-junctions can be configured to perform power dividing/combining; and wherein the septum layer evenly bisects each port of the linear array of ports. A stack of such azimuth combiners can form a two dimensional planar array of ports to which can be added a horn aperture layer, and a grid layer, to form a dual-polarized, dual-BFN, dual-band antenna array.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 24, 2015
    Assignee: Viasat, Inc.
    Inventors: Donald Lawson Runyon, Dominic Quang Nguyen, James W. Maxwell
  • Publication number: 20140341656
    Abstract: A subsea assembly comprises a first structure (1) including a plurality of substantially parallel guide posts (4) and a second structure (2) comprising a support and depending therefrom a plurality of tubular receptacles (12) each positioned for fitment on a respective one of the guide posts. At least one of the receptacles includes a plurality of longitudinally disposed semi-elliptical springs (15) disposed to engage the exterior of the respective guide post (4) and thereby to axially centre the receptacle with respect to the guide post. In a converse arrangement at least one of the posts (4) carries a plurality of longitudinally disposed semi-elliptical springs (15) disposed to engage the interior of the respective receptacle (12) and thereby to axially centre the receptacle with respect to the guide post.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 20, 2014
    Applicant: AKER SUBSEA LIMITED
    Inventor: Charles Donald LAWSON
  • Patent number: 8817672
    Abstract: In an exemplary embodiment, a phased array antenna comprises a bidirectional antenna polarizer and is configured for bidirectional operation. The bidirectional antenna polarizer may combine active implementations of power splitters, power combiners, and phase shifters. Furthermore, in another exemplary embodiment a bidirectional antenna polarizer has extensive system flexibility and field reconfigurability. In yet another exemplary embodiment, the bidirectional phased array antenna operates in “radar-like” applications where the transmit and receive functions operate in half-duplex fashion. Furthermore, in exemplary embodiments, the phased array antenna is configured to operate over multiple frequency bands and/or multiple polarizations.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: August 26, 2014
    Assignee: ViaSat, Inc.
    Inventors: David W. Corman, Donald Lawson Runyon, David Hancharik
  • Publication number: 20140139400
    Abstract: A method, system, and device relating to a broad-band fragmented aperture tile and antenna system are disclosed. In one exemplary embodiment, an aperture tile comprises a plurality of unit cells. The plurality of unit cells individually comprise a driven radiating element layer, a module layer having a printed circuit board, wherein the module layer comprises one or more of a time delay module, a radio frequency distribution module, a radio frequency module, or a digital signal processor. Furthermore the aperture tile is coupled to a cold plate configured for heat transfer.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: VIASAT, INC.
    Inventors: John Daniel Voss, Donald Lawson Runyon
  • Patent number: 8730119
    Abstract: A feed horn and systems and methods of making and using the feed horn are presented. Exemplary feed horns include a first portion comprising a dual mode geometry and a second portion comprising an axial corrugation geometry. The feed horn may operate simultaneously in a plurality of separate frequency bands (e.g., from about 18.3 GHz to about 20.2 GHz and from about 29.1 GHz to about 30.0 GHz) and a plurality of separate waveguide modes (e.g., TE11, TM11 or HE11 modes); simultaneously operating over two bandwidth segments of at least 1900 MHz that are separated by at least 5000 MHz. The feed horn may have a short axial length (e.g. less than 4 wavelengths at 18.3 GHz), and it may be configured to operate in a prime fed offset reflector antenna system. In addition, the feed horn may be formed as a single piece via a single casting pull.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: May 20, 2014
    Assignee: ViaSat, Inc.
    Inventors: Donald Lawson Runyon, David Mark Kokotoff
  • Patent number: 8654017
    Abstract: A method, system, and device relating to a broad-band fragmented aperture tile and antenna system are disclosed. In one exemplary embodiment, an aperture tile comprises a plurality of unit cells. The plurality of unit cells individually comprise a driven radiating element layer, a module layer having a printed circuit board, wherein the module layer comprises one or more of a time delay module, a radio frequency distribution module, a radio frequency module, or a digital signal processor. Furthermore the aperture tile is coupled to a cold plate configured for heat transfer.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: February 18, 2014
    Assignee: ViaSat, Inc.
    Inventors: John Daniel Voss, Donald Lawson Runyon
  • Patent number: 8587492
    Abstract: The subject of this disclosure may relate generally to systems, devices, and methods using interleaved waveguide elements. Specifically, systems, devices, and methods using a dual-polarized broadband, multi-frequency interleaved waveguide antenna aperture are presented. In one exemplary embodiment, a first plurality of waveguide elements are configured to communicate in a first frequency band. In this exemplary embodiment, a second plurality of waveguide elements are configured to communicate in a second frequency band. In one exemplary embodiment the first plurality of waveguide elements and the second plurality of waveguide elements are integrally coupled to a printed circuit board.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: November 19, 2013
    Assignee: ViaSat, Inc.
    Inventor: Donald Lawson Runyon
  • Patent number: 8542081
    Abstract: In an exemplary embodiment, a dual-band four-port orthomode transducer (OMT) is molded or cast. The OMT may be external to a transceiver housing or included as an integrated portion of the transceiver housing or a drop-in module. In an exemplary embodiment, a four-port OMT is formed from two pieces, the two pieces having a joint adjacent to or aligned to the axis of the common port. In an exemplary embodiment, the OMT is substantially planar and formed of a split-block embodiment. The two OMT pieces are joined and held together with a plurality of discrete fasteners. Furthermore, the OMT is configured to switch polarizations. The polarization switching is initiated using a remote signal and can facilitate load balancing.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: September 24, 2013
    Assignee: ViaSat, Inc.
    Inventors: Sharad Vinodrai Parekh, Kevin Mark Skinner, Donald Lawson Runyon, David Mark Kokotoff
  • Patent number: 8410980
    Abstract: In an exemplary embodiment, a phased array solid-state architecture has dual-polarized feeds and is manufactured, for example, on highly flexible silicon germanium (SiGe). The implementation of dual-polarized feeds facilitates the operation of phased arrays where the polarization can be statically or dynamically controlled on a subarray or element basis. In an exemplary embodiment, the sub-component control is configured to optimize a performance characteristic associated with polarization, such as phase or amplitude adjustment. An active phased array architecture may replace traditional distributed and GaAs implementations for the necessary functions required to operate electronically steerable phased array antennas.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 2, 2013
    Assignee: ViaSat, Inc.
    Inventors: David W. Corman, Kenneth V. Buer, Donald Lawson Runyon, Stefano Vacarro, Ferdinando Tiezzi, Daniel Llorens del Rio, Donald E. Crockett
  • Publication number: 20120299775
    Abstract: In an exemplary embodiment, a phased array solid-state architecture has dual-polarized feeds and is manufactured, for example, on highly flexible silicon germanium (SiGe). The implementation of dual-polarized feeds facilitates the operation of phased arrays where the polarization can be statically or dynamically controlled on a subarray or element basis. In an exemplary embodiment, the sub-component control is configured to optimize a performance characteristic associated with polarization, such as phase or amplitude adjustment. An active phased array architecture may replace traditional distributed and GaAs implementations for the necessary functions required to operate electronically steerable phased array antennas.
    Type: Application
    Filed: July 2, 2012
    Publication date: November 29, 2012
    Applicant: ViaSat, Inc.
    Inventors: David W. Corman, Kenneth V. Buer, Donald Lawson Runyon, Stefano Vacarro, Ferdinando Tiezzi, Daniel Llorens del Rio, Donald E. Crockett
  • Patent number: 8289209
    Abstract: In an exemplary embodiment, a monolithic active solution is configured to generate the fixed spatial beams of a Butler matrix operation or a Blass matrix operation. The exemplary Butler matrix comprises active RF hybrids and vector generators, and is designed for broadband performance in an ultra-compact size, which is size independent of the operating frequency. Furthermore, an exemplary Blass matrix comprises vector generators, active power combiners, and active power splitters. The Blass matrix is designed for broadband performance in an ultra-compact size, which is size independent of the operating frequency. Both the exemplary Butler matrix and exemplary Blass matrix may be configured generate steerable beams. Advantages of both the exemplary Butler matrix and exemplary Blass matrix include that they have neutral or slight positive power gain rather than high losses, and have ultra broadband range which enables operation over multiple frequency bands.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: October 16, 2012
    Assignee: ViaSat, Inc.
    Inventors: David W. Corman, Donald Lawson Runyon
  • Patent number: 8228232
    Abstract: In an exemplary embodiment, a phased array solid-state architecture has dual-polarized feeds and is manufactured, for example, on highly flexible silicon germanium (SiGe). The implementation of dual-polarized feeds facilitates the operation of phased arrays where the polarization can be statically or dynamically controlled on a subarray or element basis. In an exemplary embodiment, the sub-component control is configured to optimize a performance characteristic associated with polarization, such as phase or amplitude adjustment. An active phased array architecture may replace traditional distributed and GaAs implementations for the necessary functions required to operate electronically steerable phased array antennas.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: July 24, 2012
    Assignee: ViaSat, Inc.
    Inventors: David W. Corman, Kenneth V. Buer, Donald Lawson Runyon, Stefano Vacarro, Ferdinando Tiezzi, Daniel Llorens del Rio, Donald E. Crockett
  • Publication number: 20110205136
    Abstract: A feed horn and systems and methods of making and using the feed horn are presented. Exemplary feed horns include a first portion comprising a dual mode geometry and a second portion comprising an axial corrugation geometry. The feed horn may operate simultaneously in a plurality of separate frequency bands (e.g., from about 18.3 GHz to about 20.2 GHz and from about 29.1 GHz to about 30.0 GHz) and a plurality of separate waveguide modes (e.g., TE11, TM11 or HE11 modes); simultaneously operating over two bandwidth segments of at least 1900 MHz that are separated by at least 5000 MHz. The feed horn may have a short axial length (e.g. less than 4 wavelengths at 18.3 GHz), and it may be configured to operate in a prime fed offset reflector antenna system. In addition, the feed horn may be formed as a single piece via a single casting pull.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 25, 2011
    Applicant: VIASAT, INC.
    Inventors: Donald Lawson Runyon, David Mark Kokotoff
  • Publication number: 20100259445
    Abstract: In an exemplary embodiment, a phased array solid-state architecture has dual-polarized feeds and is manufactured, for example, on highly flexible silicon germanium (SiGe). The implementation of dual-polarized feeds facilitates the operation of phased arrays where the polarization can be statically or dynamically controlled on a subarray or element basis. In an exemplary embodiment, the sub-component control is configured to optimize a performance characteristic associated with polarization, such as phase or amplitude adjustment. An active phased array architecture may replace traditional distributed and GaAs implementations for the necessary functions required to operate electronically steerable phased array antennas.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 14, 2010
    Applicant: VIASAT, INC.
    Inventors: David W. Corman, Kenneth V. Buer, Donald Lawson Runyon, Stefano Vacarro, Ferdinando Tiezzi, Daniel Llorens del Rio, Donald E. Crockett
  • Publication number: 20100260076
    Abstract: In an exemplary embodiment, a phased array antenna comprises a bidirectional antenna polarizer and is configured for bidirectional operation. The bidirectional antenna polarizer may combine active implementations of power splitters, power combiners, and phase shifters. Furthermore, in another exemplary embodiment a bidirectional antenna polarizer has extensive system flexibility and field reconfigurability. In yet another exemplary embodiment, the bidirectional phased array antenna operates in “radar-like” applications where the transmit and receive functions operate in half-duplex fashion. Furthermore, in exemplary embodiments, the phased array antenna is configured to operate over multiple frequency bands and/or multiple polarizations.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 14, 2010
    Applicant: VIASAT, INC.
    Inventors: David W. Corman, Donald Lawson Runyon, David Hancharik
  • Publication number: 20100259446
    Abstract: In an exemplary embodiment, a monolithic active solution is configured to generate the fixed spatial beams of a Butler matrix operation or a Blass matrix operation. The exemplary Butler matrix comprises active RF hybrids and vector generators, and is designed for broadband performance in an ultra-compact size, which is size independent of the operating frequency. Furthermore, an exemplary Blass matrix comprises vector generators, active power combiners, and active power splitters. The Blass matrix is designed for broadband performance in an ultra-compact size, which is size independent of the operating frequency. Both the exemplary Butler matrix and exemplary Blass matrix may be configured generate steerable beams. Advantages of both the exemplary Butler matrix and exemplary Blass matrix include that they have neutral or slight positive power gain rather than high losses, and have ultra broadband range which enables operation over multiple frequency bands.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 14, 2010
    Applicant: VIASAT, INC.
    Inventors: David W. Corman, Donald Lawson Runyon
  • Publication number: 20100259346
    Abstract: The subject of this disclosure may relate generally to systems, devices, and methods using interleaved waveguide elements. Specifically, systems, devices, and methods using a dual-polarized broadband, multi-frequency interleaved waveguide antenna aperture are presented. In one exemplary embodiment, a first plurality of waveguide elements are configured to communicate in a first frequency band. In this exemplary embodiment, a second plurality of waveguide elements are configured to communicate in a second frequency band. In one exemplary embodiment the first plurality of waveguide elements and the second plurality of waveguide elements are integrally coupled to a printed circuit board.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 14, 2010
    Applicant: VIASAT, INC.
    Inventor: Donald Lawson Runyon