Patents by Inventor Donald A. Zehnder

Donald A. Zehnder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230317919
    Abstract: Disclosed herein are methods, systems, and compositions for the liquid-phase deposition of film coatings onto the surface of battery material powders. The battery material powders are introduced into a reaction vessel within which the coating is to be performed. A solvent is added to the reaction vessel to fluidize the battery material powders, thereby yielding a slurry composed of the solvent and powders. A first reagent is then added into the reaction vessel to react with the slurry to produce battery material powders comprising an adsorbed partial layer of the first reagent. A second reagent is added into reaction vessel to react with the battery material powders comprising an adsorbed monolayer of first reagent, thereby yielding coated battery material powders comprising at least one monolayer film.
    Type: Application
    Filed: August 28, 2021
    Publication date: October 5, 2023
    Inventors: Sourav Roger Basu, Jonathan Tan, Michael D Slater, Donald A. Zehnder, Matthew A. Kolaczkowski
  • Publication number: 20230235225
    Abstract: The invention pertains to the field of nanotechnology. The disclosure provides nanostructure compositions comprising (a) at least one organic solvent; (b) at least one population of nanostructures comprising a core and at least one shell, wherein the nanostructures comprise inorganic ligands bound to the surface of the nanostructures; and (c) at least one poly(alkylene oxide) additive. The nanostructure compositions comprising at least one poly(alkylene oxide) additive show improved solubility in organic solvents. And, the nanostructure compositions show increased suitability for use in inkjet printing. The disclosure also provides methods of producing emissive layers using the nanostructure compositions.
    Type: Application
    Filed: December 19, 2022
    Publication date: July 27, 2023
    Applicant: Nanosys, Inc.
    Inventors: Christian IPPEN, Donald ZEHNDER, Ruiqing MA
  • Publication number: 20230036119
    Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising donor-acceptor ligands. The present invention also provides nanostructure films comprising the nanostructure compositions and methods of making nanostructure films using the nanostructure compositions.
    Type: Application
    Filed: July 7, 2022
    Publication date: February 2, 2023
    Inventors: Daekyoung KIM, Christian IPPEN, Ruiquing MA, Dylan GARY, Donald ZEHNDER
  • Patent number: 11555149
    Abstract: The invention pertains to the field of nanotechnology. The disclosure provides nanostructure compositions comprising (a) at least one organic solvent; (b) at least one population of nanostructures comprising a core and at least one shell, wherein the nanostructures comprise inorganic ligands bound to the surface of the nanostructures; and (c) at least one poly(alkylene oxide) additive. The nanostructure compositions comprising at least one poly(alkylene oxide) additive show improved solubility in organic solvents. And, the nanostructure compositions show increased suitability for use in inkjet printing. The disclosure also provides methods of producing emissive layers using the nanostructure compositions.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: January 17, 2023
    Assignee: Nanosys, Inc.
    Inventors: Christian Ippen, Donald Zehnder, Ruiqing Ma
  • Publication number: 20220407025
    Abstract: Embodiments of a flexible electroluminescent (EL) device are described. An EL device includes a device stack and a flexible substrate configured to support the device stack. The device stack can include a anode and a cathode, a quantum dot (QD) film positioned between the anode and the cathode and configured to produce light having a first peak wavelength. The device stack further includes a patterned insulating layer disposed on the anode and configured to form electrically active regions in the device stack and to control emission of the light from the EL device through the electrically active regions. The EL device further includes an encapsulation layer disposed on the cathode.
    Type: Application
    Filed: July 1, 2022
    Publication date: December 22, 2022
    Applicant: Nanosys, Inc.
    Inventors: Donald A. ZEHNDER, Dylan C. HAMILTON, Ruiqing MA, Jesse R. MANDERS
  • Patent number: 11380863
    Abstract: Embodiments of a flexible electroluminescent (EL) device are described. An EL device includes a device stack and a flexible substrate configured to support the device stack. The device stack can include a anode and a cathode, a quantum dot (QD) film positioned between the anode and the cathode and configured to produce light having a first peak wavelength. The device stack further includes a patterned insulating layer disposed on the anode and configured to form electrically active regions in the device stack and to control emission of the light from the EL device through the electrically active regions. The EL device further includes an encapsulation layer disposed on the cathode.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: July 5, 2022
    Assignee: Nanosys, Inc.
    Inventors: Donald A. Zehnder, Dylan C. Hamilton, Ruiqing Ma, Jesse R. Manders
  • Publication number: 20220131102
    Abstract: Embodiments of an electroluminescent device are described. The electroluminescent device includes a substrate, a first electrode disposed on the substrate, an emission layer comprising luminescent nanostructures disposed on the first electrode, a hybrid transport layer disposed on the emission layer, and a second electrode disposed on the hybrid transport layer. The hybrid transport layer includes an organic layer and inorganic nanostructures disposed within the organic layer. The luminescent nanostructures are separated from the inorganic nanostructures by the organic layer.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 28, 2022
    Applicant: Nanosys, Inc.
    Inventors: Daekyoung KIM, Ruiqing MA, Emma DOHNER, Donald ZEHNDER
  • Patent number: 11268022
    Abstract: The invention relates to highly stable nanostructures with inorganic ligands for electroluminescent devices, particularly nanostructure composition comprising at least one population of nanostructures; and at least one fluoride containing ligand bound to the surface of the nanostructure; wherein the fluoride containing ligand is selected from the group consisting of a fluorozincate, tetrafluoroborate, and hexafluorophosphate. The invention also relates to highly stable nanostructures comprising at least one population of nanostructures and fluoride anions bound to the surface of the nanostructure. The invention also relates to methods of producing such nanostructures.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: March 8, 2022
    Assignee: Nanosys, Inc.
    Inventors: Christian Ippen, John J. Curley, Donald Zehnder, Dylan Charles Hamilton, Benjamin Newmeyer, Ruiqing Ma
  • Patent number: 11041071
    Abstract: The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one poly(alkylene oxide) ligand bound to the surface of the nanostructures, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: June 22, 2021
    Assignee: Nanosys, Inc.
    Inventors: Ravisubhash Tangirala, Shihai Kan, Jay Yamanaga, Charles Hotz, Donald Zehnder
  • Publication number: 20210071077
    Abstract: The invention pertains to the field of nanotechnology. The disclosure provides nanostructure compositions comprising (a) at least one organic solvent; (b) at least one population of nanostructures comprising a core and at least one shell, wherein the nanostructures comprise inorganic ligands bound to the surface of the nanostructures; and (c) at least one poly(alkylene oxide) additive. The nanostructure compositions comprising at least one poly(alkylene oxide) additive show improved solubility in organic solvents. And, the nanostructure compositions show increased suitability for use in inkjet printing. The disclosure also provides methods of producing emissive layers using the nanostructure compositions.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 11, 2021
    Applicant: Nanosys, Inc.
    Inventors: Christian IPPEN, Donald ZEHNDER, Ruiqing MA
  • Publication number: 20210013371
    Abstract: Embodiments of the present application relate to the use of quantum dots mixed with spacer particles. An illumination device includes a first conductive layer, a second conductive layer, and an active layer disposed between the first conductive layer and the second conductive layer. The active layer includes a plurality of quantum dots that emit light when an electric field is generated between the first and second conductive layers. The quantum dots are interspersed with spacer particles that do not emit light when the electric field is generated between the first and second conductive layers.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Applicant: Nanosys, Inc.
    Inventors: Jesse MANDERS, Christian IPPEN, Donald ZEHNDER, Jonathan TRUSKIER, Charles HOTZ
  • Patent number: 10790411
    Abstract: Embodiments of the present application relate to the use of quantum dots mixed with spacer particles. An illumination device includes a first conductive layer, a second conductive layer, and an active layer disposed between the first conductive layer and the second conductive layer. The active layer includes a plurality of quantum dots that emit light when an electric field is generated between the first and second conductive layers. The quantum dots are interspersed with spacer particles that do not emit light when the electric field is generated between the first and second conductive layers.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 29, 2020
    Assignee: Nanosys, Inc.
    Inventors: Jesse Manders, Christian Ippen, Donald Zehnder, Jonathan Truskier, Charles Hotz
  • Publication number: 20200299575
    Abstract: The invention relates to highly stable nanostructures with inorganic ligands for electroluminescent devices, particularly nanostructure composition comprising at least one population of nanostructures; and at least one fluoride containing ligand bound to the surface of the nanostructure; wherein the fluoride containing ligand is selected from the group consisting of a fluorozincate, tetrafluoroborate, and hexafluorophosphate. The invention also relates to highly stable nanostructures comprising at least one population of nanostructures and fluoride anions bound to the surface of the nanostructure. The invention also relates to methods of producing such nanostructures.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Applicant: Nanosys, Inc.
    Inventors: Christian IPPEN, John J. CURLEY, Donald ZEHNDER, Dylan Charles HAMILTON, Benjamin NEWMEYER, Ruiqing MA
  • Publication number: 20200303668
    Abstract: Embodiments of a flexible electroluminescent (EL) device are described. An EL device includes a device stack and a flexible substrate configured to support the device stack. The device stack can include a anode and a cathode, a quantum dot (QD) film positioned between the anode and the cathode and configured to produce light having a first peak wavelength. The device stack further includes a patterned insulating layer disposed on the anode and configured to form electrically active regions in the device stack and to control emission of the light from the EL device through the electrically active regions. The EL device further includes an encapsulation layer disposed on the cathode.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 24, 2020
    Applicant: Nanosys, Inc.
    Inventors: Donald A. ZEHNDER, Dylan C. HAMILTON, Ruiqing Ma, Jesse R. MANDERS
  • Publication number: 20190077954
    Abstract: The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one poly(alkylene oxide) ligand bound to the surface of the nanostructures, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.
    Type: Application
    Filed: August 16, 2018
    Publication date: March 14, 2019
    Applicant: Nanosys, Inc.
    Inventors: Ravisubhash Tangirala, Shihai Kan, Jay Yamanaga, Charles Hotz, Donald Zehnder
  • Patent number: 9263638
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: February 16, 2016
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Marc D. Schrier, Donald Zehnder, Joseph Treadway, Joseph Bartel
  • Patent number: 8834628
    Abstract: A method is described for the manufacture of semiconductor nanoparticles. Improved yields are obtained by use of a reducing agent or oxygen reaction promoter.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: September 16, 2014
    Assignee: Life Technologies Corporation
    Inventors: Donald A. Zehnder, Joseph Treadway
  • Publication number: 20140131631
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 15, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Marc D. SCHRIER, Donald ZEHNDER, Joseph TREADWAY, Joseph BARTEL
  • Patent number: 8603362
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of these nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A; and can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone. This method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 10, 2013
    Assignee: Life Technologies Corporation
    Inventors: Marc Schrier, Donald Zehnder, Joseph Treadway, Joseph Bartel
  • Publication number: 20130037762
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of these nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A; and can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone. This method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Application
    Filed: September 10, 2012
    Publication date: February 14, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Marc D. Schrier, Donald A. Zehnder, Joseph A. Treadway, Joseph A. Bartel