Patents by Inventor Donald Chamberlain
Donald Chamberlain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20070253289Abstract: A network distributed seismic data acquisition system comprises seismic receivers connected to remote acquisition modules, receiver lines, line tap units, base lines, a central recording system and a seismic source event generation unit synchronized to a master clock. One or more high precision clocks is added to the network to correct for timing uncertainty associated with propagation of commands through the network. Seismic receivers and seismic sources are thereby synchronized with greater accuracy than otherwise possible. Timing errors that interfere with the processing of the seismic recordings are greatly reduced, thus enabling an improvement in subsurface geologic imaging.Type: ApplicationFiled: May 24, 2007Publication date: November 1, 2007Applicant: Geo-X Systems, Ltd.Inventors: Donald Chamberlain, Norman Heidebrecht
-
Publication number: 20070189118Abstract: A seismic survey system having remote acquisition modules (RAMs) for acquiring seismic signals and communicating with a central recording system (CRU) via a network of cables, other RAMs, and line tap units (LTUs), arranged in a matrix of receiver lines and base lines. Each RAM cyclically converts analog signal values to digital, forming data packets. Interrogation commands emanating from the CRU and relayed with strategic delays by intervening LTUs and RAMs are received by the RAM. Each command causes the RAM to transmit a data packet. Strategic delays are set such that the transmission capacity of the line is best utilized. Power and frequency of transmission are selectable by the CRU to optimize performance. Cables contain multiple communication pairs. The network path between the RAM and the CRU is established from the CRU and altered in event of malfunction. All types of network elements are interconnectable. Recorded samples are synchronous.Type: ApplicationFiled: March 20, 2007Publication date: August 16, 2007Applicant: Geo-X Systems, Ltd.Inventor: Donald Chamberlain
-
Publication number: 20060225910Abstract: A universal seismic data acquisition module includes independent environmental isolation chambers for essential signal processing circuitry and for cable connection unions. Cable connection unions are rapidly replaced without opening the main protective chamber. Different connector types required for the many data transmission cable designs needed to service a wide range of survey conditions are more easily accommodated than in conventional single chamber designs. The module is rugged and suitable for operating in a wide range of physical environments including lake or sea immersion to substantial water depths, desert, arctic and others. Need for investment in multiple module types for varying survey conditions is thereby reduced without compromising capacity.Type: ApplicationFiled: June 5, 2006Publication date: October 12, 2006Applicant: Geo-X Systems, Ltd.Inventor: Donald Chamberlain
-
Publication number: 20060133201Abstract: A hermaphroditic connector for a multiple conduit cable assembly comprises a cylindrical protective collar surrounding an inner cylindrical core. The collar is axially secured to the inner core but partially rotatable about the core. The distal end of the collar is formed to rotatively mesh with another collar of the same shape to mechanically secure a joint of two collars. Cable conduits enter the assembly through one axial end for electrical junction to terminals imbedded within the inner core. The terminals are functionally aligned with one of four parallel chord sections on the distal end-face of the inner core. The cross-sectional area of the inner core end-face is divided into two half-area sections; two parallel chord sections in each half-area section. The distal end-faces of the several chord sections are profiled to three, axially spaced, cross-sectional planes to axially mesh respective connector pins and sockets.Type: ApplicationFiled: November 18, 2005Publication date: June 22, 2006Applicant: Geo-X Systems, Ltd,Inventors: Donald Chamberlain, Randall Cameron
-
Publication number: 20060018195Abstract: A seismic survey system having remote acquisition modules (RAMs) for acquiring seismic signals and communicating with a central recording system (CRU) via a network of cables, other RAMs, and line tap units (LTUs), arranged in a matrix of receiver lines and base lines. Each RAM cyclically converts analog signal values to digital, forming data packets. Interrogation commands emanating from the CRU and relayed with strategic delays by intervening LTUs and RAMs are received by the RAM. Each command causes the RAM to transmit a data packet. Strategic delays are set such that the transmission capacity of the line is best utilized. Power and frequency of transmission are selectable by the CRU to optimize performance. Cables contain multiple communication pairs. The network path between the RAM and the CRU is established from the CRU and altered in event of malfunction. All types of network elements are interconnectable. Recorded samples are synchronous.Type: ApplicationFiled: September 6, 2005Publication date: January 26, 2006Applicant: Geo-X Systems, Ltd.Inventor: Donald Chamberlain
-
Publication number: 20060018196Abstract: A seismic survey system having remote acquisition modules (RAMs) for acquiring seismic signals and communicating with a central recording system (CRU) via a network of cables, other RAMs, and line tap units (LTUs), arranged in a matrix of receiver lines and base lines. Each RAM cyclically converts analog signal values to digital, forming data packets. Interrogation commands emanating from the CRU and relayed with strategic delays by intervening LTUs and RAMs are received by the RAM. Each command causes the RAM to transmit a data packet. Strategic delays are set such that the transmission capacity of the line is best utilized. Power and frequency of transmission are selectable by the CRU to optimize performance. Cables contain multiple communication pairs. The network path between the RAM and the CRU is established from the CRU and altered in event of malfunction. All types of network elements are interconnectable. Recorded samples are synchronous.Type: ApplicationFiled: September 6, 2005Publication date: January 26, 2006Applicant: Geo-X Systems, Ltd.Inventor: Donald Chamberlain
-
Publication number: 20060018194Abstract: A seismic survey system having remote acquisition modules (RAMs) for acquiring seismic signals and communicating with a central recording system (CRU) via a network of cables, other RAMs, and line tap units (LTUs), arranged in a matrix of receiver lines and base lines. Each RAM cyclically converts analog signal values to digital, forming data packets. Interrogation commands emanating from the CRU and relayed with strategic delays by intervening LTUs and RAMs are received by the RAM. Each command causes the RAM to transmit a data packet. Strategic delays are set such that the transmission capacity of the line is best utilized. Power and frequency of transmission are selectable by the CRU to optimize performance. Cables contain multiple communication pairs. The network path between the RAM and the CRU is established from the CRU and altered in event of malfunction. All types of network elements are interconnectable. Recorded samples are synchronous.Type: ApplicationFiled: September 6, 2005Publication date: January 26, 2006Applicant: Geo-X Systems, Ltd.Inventor: Donald Chamberlain
-
Publication number: 20060018193Abstract: A seismic survey system having remote acquisition modules (RAMs) for acquiring seismic signals and communicating with a central recording system (CRU) via a network of cables, other RAMs, and line tap units (LTUs), arranged in a matrix of receiver lines and base lines. Each RAM cyclically converts analog signal values to digital, forming data packets. Interrogation commands emanating from the CRU and relayed with strategic delays by intervening LTUs and RAMs are received by the RAM. Each command causes the RAM to transmit a data packet. Strategic delays are set such that the transmission capacity of the line is best utilized. Power and frequency of transmission are selectable by the CRU to optimize performance. Cables contain multiple communication pairs. The network path between the RAM and the CRU is established from the CRU and altered in event of malfunction. All types of network elements are interconnectable. Recorded samples are synchronous.Type: ApplicationFiled: September 6, 2005Publication date: January 26, 2006Applicant: Geo-X Systems, Ltd.Inventor: Donald Chamberlain
-
Publication number: 20060007782Abstract: A seismic survey system having remote acquisition modules (RAMs) for acquiring seismic signals and communicating with a central recording system (CRU) via a network of cables, other RAMs, and line tap units (LTUs), arranged in a matrix of receiver lines and base lines. Each RAM cyclically converts analog signal values to digital, forming data packets. Interrogation commands emanating from the CRU and relayed with strategic delays by intervening LTUs and RAMs are received by the RAM. Each command causes the RAM to transmit a data packet. Strategic delays are set such that the transmission capacity of the line is best utilized. Power and frequency of transmission are selectable by the CRU to optimize performance. Cables contain multiple communication pairs. The network path between the RAM and the CRU is established from the CRU and altered in event of malfunction. All types of network elements are interconnectable. Recorded samples are synchronous.Type: ApplicationFiled: September 6, 2005Publication date: January 12, 2006Applicant: Geo-X Systems, Ltd.Inventor: Donald Chamberlain
-
Publication number: 20060002231Abstract: A seismic survey system having remote acquisition modules (RAMs) for acquiring seismic signals and communicating with a central recording system (CRU) via a network of cables, other RAMs, and line tap units (LTUs), arranged in a matrix of receiver lines and base lines. Each RAM cyclically converts analog signal values to digital, forming data packets. Interrogation commands emanating from the CRU and relayed with strategic delays by intervening LTUs and RAMs are received by the RAM. Each command causes the RAM to transmit a data packet. Strategic delays are set such that the transmission capacity of the line is best utilized. Power and frequency of transmission are selectable by the CRU to optimize performance. Cables contain multiple communication pairs. The network path between the RAM and the CRU is established from the CRU and altered in event of malfunction. All types of network elements are interconnectable. Recorded samples are synchronous.Type: ApplicationFiled: September 6, 2005Publication date: January 5, 2006Applicant: Geo-X Systems, Ltd.Inventor: Donald Chamberlain
-
Publication number: 20050047275Abstract: A network distributed seismic data acquisition system comprises seismic receivers, connected to remote acquisition modules, receiver lines, line tap units, base lines, central recording system and a seismic source event generation unit. Global positioning system receivers of full or partial capability are combined with some of these modules and units and a master global positioning receiver aids the distributed receivers. The global positioning receivers may be used to synchronize high precision clocks as well as to provide positioning information. A master clock is designated and one or more high precision clocks is added to the network to correct for timing uncertainty associated with propagation of commands through the network. Seismic receivers and seismic sources are thereby synchronized with greater accuracy than otherwise possible, thus enabling an improvement in subsurface geologic imaging.Type: ApplicationFiled: October 25, 2003Publication date: March 3, 2005Applicant: Geo-X Systems, Ltd.Inventors: Donald Chamberlain, Norman Heidebrecht
-
Publication number: 20050047277Abstract: A set of seismic detectors is distributed throughout a defense zone in communication with a set of attack or other controllable devices. A seismic signal source controlled by a zone defense coordinator communicates at scheduled times to the seismic detectors and through them to the associated devices to convey mission critical information. The seismic detectors and the attack devices are controlled singularly and/or collectively by self-contained processors. The seismic source may be at a fixed site and is substantially repeatable as well as controllable. The system may be specially adapted to a wide range of terrains including land and water; and from very shallow to very deep water. Targets may be characterized in terms of their typical seismic signatures and the same hardware system used for seismic communication may be also programmed for target detection and device activation.Type: ApplicationFiled: August 30, 2003Publication date: March 3, 2005Applicant: Geo-X Systems, Ltd.Inventors: Donald Chamberlain, Jerald Harmon, William Bell