Patents by Inventor Donald D. Johnson

Donald D. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11740233
    Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 29, 2023
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Julia Ashworth-Sharpe, Christopher Bieniarz, Michael Farrell, Donald D. Johnson, Jerome W. Kosmeder, Adrian E. Murillo, Chol Steven Yun, Zhanna Zhilina
  • Publication number: 20180372733
    Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 27, 2018
    Inventors: Julia Ashworth-Sharpe, Christopher Bieniarz, Michael Farrell, Donald D. Johnson, Jerome W. Kosmeder, Adrian E. Murillo, Chol Steven Yun, Zhanna Zhilina
  • Patent number: 10031134
    Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: July 24, 2018
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Julia Ashworth-Sharpe, Chol Steven Yun, Zhanna Zhilina, Adrian E. Murillo, Donald D. Johnson, Michael Farrell, Jerome W. Kosmeder, Christopher Bieniarz
  • Publication number: 20170131271
    Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
    Type: Application
    Filed: September 12, 2016
    Publication date: May 11, 2017
    Inventors: Julia Ashworth-Sharpe, Chol Steven Yun, Zhanna Zhilina, Adrian E. Murillo, Donald D. Johnson, Michael Farrell, Jerome W. Kosmeder, Christopher Bieniarz
  • Patent number: 9442107
    Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: September 13, 2016
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Julia Ashworth-Sharpe, Chol Steven Yun, Zhanna Zhilina, Adrian E. Murillo, Donald D. Johnson, Michael Farrell, Jerome W. Kosmeder, Christopher Bieniarz
  • Publication number: 20160116462
    Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
    Type: Application
    Filed: April 21, 2015
    Publication date: April 28, 2016
    Inventors: Julia Ashworth-Sharpe, Chol Steven Yun, Zhanna Zhilina, Adrian E. Murillo, Donald D. Johnson, Michael Farrell, Jerome W. Kosmeder, Christopher Bieniarz
  • Patent number: 9040310
    Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 26, 2015
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Julia Ashworth-Sharpe, Chol Steven Yun, Zhanna Zhilina, Adrian E. Murillo, Donald D. Johnson, Michael Farrell, Jerome W. Kosmeder, Christopher Bieniarz
  • Publication number: 20130034854
    Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
    Type: Application
    Filed: April 27, 2011
    Publication date: February 7, 2013
    Applicant: VENTANA MEDICAL SYSTEMS, INC.
    Inventors: Julia Ashworth-Sharpe, Chol Steven Yun, Zhanna Zhilina, Adrian E. Murillo, Donald D. Johnson, Michael Farrell, Jerome W. Kosmeder, Christopher Bieniarz
  • Patent number: 7256008
    Abstract: Methods and kits for measurement of concentration of FK778 in a biological sample by means of an immunoassay, preferably a competitive immunoassay. In one aspect, the method and kit involve the use of (a) an antibody to FK778 conjugated to a label, e.g., an acridinium label, (b) an antibody to FK778 not conjugated to a label, (c) a solid phase containing an antibody to a first hapten, e.g., a fluorescein hapten, and (d) a bihapten comprising a first hapten and FK778 or an analogue of FK778, e.g., a bihapten comprising a fluorescein hapten and a FK778 hapten. In another aspect, the method and kit involve the use of (a) antibody to FK778, (b) a bihapten comprising FK778 or an analogue of FK778 and a first hapten, e.g., a bihapten comprising the fluorescein hapten and the hapten of FK778 or an analogue of FK778, and (c) a pretreatment reagent.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: August 14, 2007
    Assignee: Abbott Laboratories
    Inventors: Thomas G. Spring, Elaine M. Brate, Shelley Holets-McCormack, Rajarathnam E. Reddy, Donald D. Johnson, Yon-Yih Chen, You Pan
  • Patent number: 5691456
    Abstract: Immunoassay methods and reagents for the specific quantification of thyroxine in a test sample are disclosed employing antibodies prepared with thyroxine derivatives of the formula: ##STR1## wherein P is an immunogenic carrier material and X is a linking moiety. The present invention also describes the synthesis of unique labelled reagent of the formula: ##STR2## wherein Q is a detectable moiety and W is a linking moiety, preferably fluorescein or a fluorescein derivative.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: November 25, 1997
    Assignee: Abbott Laboratories
    Inventors: Maciej Adamczyk, Donald D. Johnson, Phillip G. Mattingly, Diana E. Clarisse, Joan D. Tyner, Mary M. Perkowitz
  • Patent number: 5688921
    Abstract: Immunoassay methods and reagents for the specific quantification of thyroxine in a test sample are disclosed employing antibodies prepared with thyroxine derivatives of the formula: ##STR1## wherein P is an immunogenic carrier material and X is a linking moiety. The present invention also describes the synthesis of unique labelled reagent of the formula: ##STR2## wherein Q is a detectable moiety and W is a linking moiety, preferably fluorescein or a fluorescein derivative.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: November 18, 1997
    Assignee: Abbott Laboratories D-337/AP6D
    Inventors: Maciej Adamczyk, Donald D. Johnson, Phillip G. Mattingly, Diana E. Clarisse, Joan D. Tyner, Mary M. Perkowitz
  • Patent number: 5648272
    Abstract: Immunoassay methods and reagents for the specific quantification of thyroxine in a test sample are disclosed employing antibodies prepared with thyroxine derivatives of the formula: ##STR1## wherein P is an immunogenic carrier material and X is a linking moiety. The present invention also describes the synthesis of unique labelled reagent of the formula: ##STR2## wherein Q is a detectable moiety and W is a linking moiety, preferably fluorescein or a fluorescein derivative.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: July 15, 1997
    Assignee: Abbott Laboratories
    Inventors: Maciej Adamczyk, Donald D. Johnson, Phillip G. Mattingly, Diana E. Clarisse, Joan D. Tyner, Mary M. Perkowitz
  • Patent number: 5593896
    Abstract: Immunoassay methods and reagents for the specific quantification of thyroxine in a test sample are disclosed employing antibodies prepared with thyroxine derivatives of the formula: ##STR1## wherein P is an immunogenic carrier material and X is a linking moiety. The present invention also describes the synthesis of unique labelled reagent of the formula: ##STR2## wherein Q is a detectable moiety and W is a linking moiety, preferably fluorescein or a fluorescein derivative.
    Type: Grant
    Filed: July 13, 1994
    Date of Patent: January 14, 1997
    Assignee: Abbott Laboratories
    Inventors: Maciej Adamczyk, Donald D. Johnson, Phillip G. Mattingly, Diana E. Clarisse, Joan D. Tyner, Mary M. Perkowitz
  • Patent number: 5359093
    Abstract: Immunoassay methods and reagents for the specific quantification of thyroxine in a test sample are disclosed employing antibodies prepared with thyroxine derivatives of the formula: ##STR1## wherein P is an immunogenic carrier material and X is a linking moiety. The present invention also describes the synthesis of unique labelled reagent of the formula: ##STR2## wherein Q is a detectable moiety and W is a linking moiety, preferably fluorescein or a fluorescein derivative.
    Type: Grant
    Filed: November 6, 1992
    Date of Patent: October 25, 1994
    Assignee: Abbott Laboratories
    Inventors: Maciej Adamczyk, Donald D. Johnson, Phillip G. Mattingly, Diana E. Clarisse, Joan D. Tyner, Mary M. Perkowitz
  • Patent number: 5354693
    Abstract: A fluorescence polarization immunoassay (FPIA) for detecting the presence of one or more amphetamine-class analytes in a test sample is provided. The immunoassay uses competition between the analyte and a fluorescently labeled tracer for the binding site on an antibody specific for phenethylamine derivatives. The concentration of amphetamine-class analyte in the sample determines the amount of tracer that binds to the antibody. The amount of tracer-antibody complex formed can be quantitatively measured and is inversely proportional to the quantity of analyte in the test sample. The invention relates to tracers, to immunogens used to elicit antibodies for use as assay reagents, and to assay kits incorporating these tracers and assay reagents.
    Type: Grant
    Filed: June 29, 1993
    Date of Patent: October 11, 1994
    Assignee: Abbott Laboratories
    Inventors: Paul J. Brynes, Donald D. Johnson, Cynthia M. Molina, Charles A. Flentge, Patrick F. Jonas
  • Patent number: 5326968
    Abstract: A photoelectric sensor is adapted for use in specific applications which require the additional attachment of a circular polarizer. A piece of circular polarizer material is general disc-shaped with two planar surfaces and a peripheral circular surface. The outer periphery of the disc-shaped circular polarizer is encapsulated within a generally annular molded rim. The molded rim is provided with a protrusion that is generally circular and extends from one of the generally flat surfaces of the rim material. The protrusion facilitates the attachment of the rim to the operative face of a photoelectric sensor through the process of ultrasonic welding. Advantages achieved by this device include the facilitated attachment of the circular polarizer to a photoelectric sensor, the protection of the outer peripheral edges of the laminations of the circular polarizer and the avoidance of distortions of the circular polarizer during the manufacturing process.
    Type: Grant
    Filed: March 12, 1993
    Date of Patent: July 5, 1994
    Assignee: Honeywell Inc.
    Inventors: Donald D. Johnson, Surrinder S. Puri, Jim Yee
  • Patent number: 5248791
    Abstract: A fluorescence polarization immunoassay (FPIA) for detecting the presence of one or more amphetamine-class analytes in a test sample is provided. The immunoassay uses competition between the analyte and a fluorescently labeled tracer for the binding site on an antibody specific for phenethylamine derivatives. The concentration of amphetamine-class analyte in the sample determines the amount of tracer that binds to the antibody. The amount of tracer/antibody complex formed can be quantitatively measured and is inversely proportional to the quantity of analyte in the test sample. The invention relates to tracers, to immunogens used to elicit antibodies for use as assay reagents, and to assay kits incorporating these tracers and assay reagents.
    Type: Grant
    Filed: January 14, 1992
    Date of Patent: September 28, 1993
    Assignee: Abbott Laboratories
    Inventors: Paul J. Brynes, Donald D. Johnson, Cynthia M. Molina, Charles A. Flentge, Patrick F. Jonas
  • Patent number: 5174969
    Abstract: An efficient, economical, compact diesel particulate filter comprising a casing radially filled with a bundle of tubes comprising woven, braided, or knitted inorganic yarn, wherein each tube is at least about twice the length of the bundle, and is folded at one end to prevent exhaust from traveling through the hollow of the tube without passing through its wall.
    Type: Grant
    Filed: April 5, 1991
    Date of Patent: December 29, 1992
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Edward M. Fischer, Donald D. Johnson, Stephen M. Sanocki
  • Patent number: 5151591
    Abstract: An asynchronous photodetector circuit is provided to interrogate incoming signals and determine whether the frequency of those incoming signal pulses is acceptable. The circuitry of the present invention permits a series of incoming pulses to be interrogated to determine whether the frequency of those pulses is acceptable and can be assumed with confidence to be emanating from an appropriate light source. Upon the receipt of a first input signal pulse, a time window is created by the present invention to define a period to time during which a subsequent input signal pulse is to be expected. Other than during the duration of the time window, the present invention will not accept an input signal pulse and will not count that pulse as having been received. Each properly received pulse creates a subsequent time window until a predetermined number of consecutive pulses is received during their time windows. When that predetermined number is received, a signal is provided.
    Type: Grant
    Filed: March 20, 1991
    Date of Patent: September 29, 1992
    Assignee: Honeywell Inc.
    Inventors: Donald D. Johnson, Jimmy Yee
  • Patent number: D333629
    Type: Grant
    Filed: December 2, 1991
    Date of Patent: March 2, 1993
    Assignee: Honeywell Inc.
    Inventor: Donald D. Johnson