Patents by Inventor Donald Doucet

Donald Doucet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10444172
    Abstract: A chilled mirror hygrometer may comprise a thermoelectric module, a polished mirror surface, two light emitting diodes, and a single photo-transistor or optical detector. A software controller may be employed to rapidly alternate between illuminating the two light emitting diodes. The software controller may allow the single photo-transistor or optical detector to rapidly alternate between observing the light from the first light emitting diode or the second light emitting diode. The chilled mirror hygrometer may further comprise a wand portion and an electrical housing.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: October 15, 2019
    Assignee: ROSCID TECHNOLOGIES, INC.
    Inventor: Donald Doucet
  • Publication number: 20170138874
    Abstract: A chilled mirror hygrometer may comprise a thermoelectric module, a polished mirror surface, two light emitting diodes, and a single photo-transistor or optical detector. A software controller may be employed to rapidly alternate between illuminating the two light emitting diodes. The software controller may allow the single photo-transistor or optical detector to rapidly alternate between observing the light from the first light emitting diode or the second light emitting diode. The chilled mirror hygrometer may further comprise a wand portion and an electrical housing.
    Type: Application
    Filed: November 11, 2016
    Publication date: May 18, 2017
    Inventor: Donald Doucet
  • Patent number: 9405012
    Abstract: A method is provided for estimating parameters useful to determine the position of a global navigation satellite system (GNSS) receiver or a change in the position thereof. The method includes the steps of: obtaining at least one GNSS signal received at the GNSS receiver from each of a plurality of GNSS satellites; obtaining, from at least one network node, precise satellite information on: (i) the orbit or position of at least one of the plurality of GNSS satellites, and (ii) a clock offset of at least one of the plurality of GNSS satellites; identifying, among the obtained GNSS signals, a subset of at least one GNSS signal possibly affected by a cycle slip, the identified subset being hereinafter referred to as cycle-slip affected subset; and estimating parameters useful to determine the position of the GNSS receiver or a change in the position of the GNSS receiver using at least some of the obtained GNSS signals which are not in the cycle-slip affected subset, and the precise satellite information.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 2, 2016
    Assignee: Trimble Navigation Limited
    Inventors: Kenneth Donald Doucet, Herbert Landau
  • Publication number: 20130271318
    Abstract: A method is provided for estimating parameters useful to determine the position of a global navigation satellite system (GNSS) receiver or a change in the position thereof. The method includes the steps of: obtaining at least one GNSS signal received at the GNSS receiver from each of a plurality of GNSS satellites; obtaining, from at least one network node, precise satellite information on: (i) the orbit or position of at least one of the plurality of GNSS satellites, and (ii) a clock offset of at least one of the plurality of GNSS satellites; identifying, among the obtained GNSS signals, a subset of at least one GNSS signal possibly affected by a cycle slip, the identified subset being hereinafter referred to as cycle-slip affected subset; and estimating parameters useful to determine the position of the GNSS receiver or a change in the position of the GNSS receiver using at least some of the obtained GNSS signals which are not in the cycle-slip affected subset, and the precise satellite information.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 17, 2013
    Applicant: Trimble Navigation Limited
    Inventors: Kenneth Donald Doucet, Herbert Landau
  • Patent number: 7692578
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 6, 2010
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Publication number: 20090237298
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 24, 2009
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Patent number: 7589668
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: September 15, 2009
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Patent number: 7538721
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: May 26, 2009
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Publication number: 20080165054
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Application
    Filed: November 12, 2007
    Publication date: July 10, 2008
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Publication number: 20080165055
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Application
    Filed: November 12, 2007
    Publication date: July 10, 2008
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Patent number: 7312747
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: December 25, 2007
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Kenneth Donald Doucet