Patents by Inventor Donald E. Tiller

Donald E. Tiller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7139350
    Abstract: Apparatus and methods for measuring radiation in a borehole environment using a YAlO3:Ce (YAP) scintillation crystal. Borehole instruments are disclosed which employ a gamma ray detector comprising a YAP scintillator coupled to a light sensing means such as a photomultiplier tube. One instrument embodiment combines a YAP scintillation detector and a source of pulsed neutrons. Borehole environs are irradiated with neutrons, and induced gamma radiation is measured using a YAP scintillation detector. Response of the detector is used to determine characteristics of the borehole environs. Mechanical and physical properties of YAP are utilized to obtain improved measurements. The relatively short light decay constant of YAP minimized pulse pile-up in the detector when measurements require that the detector be operated during a neutron pulse.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: November 21, 2006
    Assignee: Precision Energy Services, Inc.
    Inventors: Donald E. Tiller, Richard C. Odom, Robert D. Wilson
  • Patent number: 6936812
    Abstract: A borehole logging system for determining bulk density, porosity and formation gas/liquid fluid saturation of formation penetrated by a borehole. Measures of fast neutron radiation and inelastic scatter gamma radiation, induced by a pulsed neutron source, are combined with an iterative numerical solution of a two-group diffusion model to obtain the formation parameters of interest. Double-valued ambiguities in prior art measurements are removed by using the iterative solution of the inverted two-group diffusion model. The system requires two gamma ray detectors at different axial spacings from the source, and a single neutron detector axially spaced between the two gamma ray detectors. The system can be embodied as a wireline system or as a logging-while-drilling system.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: August 30, 2005
    Assignee: Preision Energy Services, Inc.
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Publication number: 20040222368
    Abstract: A borehole logging system for determining bulk density, porosity and formation gas/liquid fluid saturation of formation penetrated by a borehole. Measures of fast neutron radiation and inelastic scatter gamma radiation, induced by a pulsed neutron source, are combined with an iterative numerical solution of a two-group diffusion model to obtain the formation parameters of interest. Double-valued ambiguities in prior art measurements are removed by using the iterative solution of the inverted two-group diffusion model. The system requires two gamma ray detectors at different axial spacings from the source, and a single neutron detector axially spaced between the two gamma ray detectors. The system can be embodied as a wireline system or as a logging-while-drilling system.
    Type: Application
    Filed: May 24, 2004
    Publication date: November 11, 2004
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Patent number: 6639210
    Abstract: An improved fast neutron detector fabricated with alternating layers of hydrogenous, optically transparent, non scintillating material and scintillating material. Fast neutrons interact with the hydrogenous material generating recoil protons. The recoil protons enter the scintillating material resulting in scintillations. The detector is optically coupled to a photomultiplier tube which generates electrical pulses proportional in amplitude to the intensity of the scintillations, and therefore are an indication of the energy of the fast neutrons impinging upon the detector. Alternating layers of materials are dimensioned to optimize total efficiency of the detector, or to optimize the spectroscopy efficiency of the detector. The scintillating material is preferably ZnS, and the hydrogenous material is preferably plastic. The detector is ideally suited for well logging applications and fast neutron monitor applications.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: October 28, 2003
    Assignee: Computalog U.S.A., Inc.
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Publication number: 20030178560
    Abstract: A borehole logging system for determining bulk density, porosity and formation gas/liquid fluid saturation of formation penetrated by a borehole. Measures of fast neutron radiation and inelastic scatter gamma radiation, induced by a pulsed neutron source, are combined with an iterative numerical solution of a two-group diffusion model to obtain the formation parameters of interest. Double-valued ambiguities in prior art measurements are removed by using the iterative solution of the inverted two-group diffusion model. The system requires two gamma ray detectors at different axial spacings from the source, and a single neutron detector axially spaced between the two gamma ray detectors. The system can be embodied as a wireline system or as a logging-while-drilling system.
    Type: Application
    Filed: March 19, 2002
    Publication date: September 25, 2003
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Publication number: 20030138067
    Abstract: Apparatus and methods for measuring radiation in a borehole environment using a YAlO3:Ce (YAP) scintillation crystal. Borehole instruments are disclosed which employ a gamma ray detector comprising a YAP scintillator coupled to a light sensing means such as a photomultiplier tube. One instrument embodiment combines a YAP scintillation detector and a source of pulsed neutrons. Borehole environs are irradiated with neutrons, and induced gamma radiation is measured using a YAP scintillation detector. Response of the detector is used to determine characteristics of the borehole environs. Mechanical and physical properties of YAP are utilized to obtain improved measurements. The relatively short light decay constant of YAP minimized pulse pile-up in the detector when measurements require that the detector be operated during a neutron pulse.
    Type: Application
    Filed: November 27, 2002
    Publication date: July 24, 2003
    Inventors: Donald E. Tiller, Richard C. Odom, Robert D. Wilson
  • Patent number: 6566657
    Abstract: An improved fast neutron detector fabricated with alternating layers of hydrogenous, optically transparent, non scintillating material and scintillating material. Fast neutrons interact with the hydrogenous material generating recoil protons. The recoil protons enter the scintillating material resulting in scintillations. The detector is optically coupled to a photomultiplier tube which generates electrical pulses proportional in amplitude to the intensity of the scintillations, and therefore are an indication of the energy of the fast neutrons impinging upon the detector. Alternating layers of materials are dimensioned to optimize total efficiency of the detector, or to optimize the spectroscopy efficiency of the detector. The scintillating material is preferably ZnS, and the hydrogenous material is preferably plastic. The detector is ideally suited for well logging applications and fast neutron monitor applications.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: May 20, 2003
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Publication number: 20030076914
    Abstract: Apparatus and methods for measuring radiation in a borehole environment using a YAlO3:Ce (YAP) scintillation crystal. Borehole instruments are disclosed which employ a gamma ray detector comprising a YAP scintillator coupled to a light sensing means such as a photomultiplier tube. One instrument embodiment combines a YAP scintillation detector and a source of pulsed neutrons. Borehole environs are irradiated with neutrons, and induced gamma radiation is measured using a YAP scintillation detector. Response of the detector is used to determine characteristics of the borehole environs. Mechanical and physical properties of YAP are utilized to obtain improved measurements. The relatively short light decay constant of YAP minimized pulse pile-up in the detector when measurements require that the detector be operated during a neutron pulse.
    Type: Application
    Filed: October 23, 2001
    Publication date: April 24, 2003
    Inventors: Donald E. Tiller, Richard C. Odom, Robert D. Wilson
  • Patent number: 6495837
    Abstract: An improved fast neutron detector fabricated with alternating layers of hydrogenous, optically transparent, non scintillating material and scintillating material. Fast neutrons interact with the hydrogenous material generating recoil protons. The recoil protons enter the scintillating material resulting in scintillations. The detector is optically coupled to a photomultiplier tube which generates electrical pulses proportional in amplitude to the intensity of the scintillations, and therefore are an indication of the energy of the fast neutrons impinging upon the detector. Alternating layers of materials are dimensioned to optimize total efficiency of the detector, or to optimize the spectroscopy efficiency of the detector. The scintillating material is preferably ZnS, and the hydrogenous material is preferably plastic. The detector is ideally suited for well logging applications and fast neutron monitor applications.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: December 17, 2002
    Assignee: Computalog U.S.A, Inc.
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Publication number: 20020130268
    Abstract: An improved fast neutron detector fabricated with alternating layers of hydrogenous, optically transparent, non scintillating material and scintillating material. Fast neutrons interact with the hydrogenous material generating recoil protons. The recoil protons enter the scintillating material resulting in scintillations. The detector is optically coupled to a photomultiplier tube which generates electrical pulses proportional in amplitude to the intensity of the scintillations, and therefore are an indication of the energy of the fast neutrons impinging upon the detector. Alternating layers of materials are dimensioned to optimize total efficiency of the detector, or to optimize the spectroscopy efficiency of the detector. The scintillating material is preferably ZnS, and the hydrogenous material is preferably plastic. The detector is ideally suited for well logging applications and fast neutron monitor applications.
    Type: Application
    Filed: March 14, 2001
    Publication date: September 19, 2002
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Publication number: 20020130267
    Abstract: An improved fast neutron detector fabricated with alternating layers of hydrogenous, optically transparent, non scintillating material and scintillating material. Fast neutrons interact with the hydrogenous material generating recoil protons. The recoil protons enter the scintillating material resulting in scintillations. The detector is optically coupled to a photomultiplier tube which generates electrical pulses proportional in amplitude to the intensity of the scintillations, and therefore are an indication of the energy of the fast neutrons impinging upon the detector. Alternating layers of materials are dimensioned to optimize total efficiency of the detector, or to optimize the spectroscopy efficiency of the detector. The scintillating material is preferably ZnS, and the hydrogenous material is preferably plastic. The detector is ideally suited for well logging applications and fast neutron monitor applications.
    Type: Application
    Filed: March 14, 2001
    Publication date: September 19, 2002
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Publication number: 20020130258
    Abstract: An improved fast neutron detector fabricated with alternating layers of hydrogenous, optically transparent, non scintillating material and scintillating material. Fast neutrons interact with the hydrogenous material generating recoil protons. The recoil protons enter the scintillating material resulting in scintillations. The detector is optically coupled to a photomultiplier tube which generates electrical pulses proportional in amplitude to the intensity of the scintillations, and therefore are an indication of the energy of the fast neutrons impinging upon the detector. Alternating layers of materials are dimensioned to optimize total efficiency of the detector, or to optimize the spectroscopy efficiency of the detector. The scintillating material is preferably ZnS, and the hydrogenous material is preferably plastic. The detector is ideally suited for well logging applications and fast neutron monitor applications.
    Type: Application
    Filed: March 14, 2001
    Publication date: September 19, 2002
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson