Patents by Inventor Donald F. Specht

Donald F. Specht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10835208
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e., concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: November 17, 2020
    Assignee: MAUI IMAGING, INC.
    Inventors: David M. Smith, Donald F. Specht, Linda V. Cabrera, Kenneth D. Brewer, David J. Specht
  • Publication number: 20200297320
    Abstract: Changes in tissue stiffness have long been associated with disease. Systems and methods for determining the stiffness of tissues using ultrasonography may include a device for inducing a propagating shear wave in tissue and tracking the speed of propagation, which is directly related to tissue stiffness and density. The speed of a propagating shear wave may be detected by imaging a tissue at a high frame rate and detecting the propagating wave as a perturbance in successive image frames relative to a baseline image of the tissue in an undisturbed state. In some embodiments, sufficiently high frame rates may be achieved by using a ping-based ultrasound imaging technique in which unfocused omni-directional pings are transmitted (in an imaging plane or in a hemisphere) into a region of interest. Receiving echoes of the omnidirectional pings with multiple receive apertures allows for substantially improved lateral resolution.
    Type: Application
    Filed: June 9, 2020
    Publication date: September 24, 2020
    Inventors: Donald F. SPECHT, Kenneth D. BREWER
  • Publication number: 20200275910
    Abstract: An apparent point-source transmit transducers comprises a substantially constant-thickness shell of piezoelectric material in a shape of a spherical-section. Such transducers may be sized such that a single apparent point-source transmit transducer may produce ultrasound waveforms with substantial energy in a medium to be imaged. Use of such transducers in three-dimensional ping-based imaging may permit deeper and higher quality imaging than may be possible with conventional transducers.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Donald F. SPECHT, Josef R. CALL
  • Patent number: 10675000
    Abstract: Changes in tissue stiffness have long been associated with disease. Systems and methods for determining the stiffness of tissues using ultrasonography may include a device for inducing a propagating shear wave in tissue and tracking the speed of propagation, which is directly related to tissue stiffness and density. The speed of a propagating shear wave may be detected by imaging a tissue at a high frame rate and detecting the propagating wave as a perturbance in successive image frames relative to a baseline image of the tissue in an undisturbed state. In some embodiments, sufficiently high frame rates may be achieved by using a ping-based ultrasound imaging technique in which unfocused omni-directional pings are transmitted (in an imaging plane or in a hemisphere) into a region of interest. Receiving echoes of the omnidirectional pings with multiple receive apertures allows for substantially improved lateral resolution.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: June 9, 2020
    Assignee: MAUI IMAGING, INC.
    Inventors: Donald F. Specht, Kenneth D. Brewer
  • Patent number: 10653392
    Abstract: An apparent point-source transmit transducers comprises a substantially constant-thickness shell of piezoelectric material in a shape of a spherical-section. Such transducers may be sized such that a single apparent point-source transmit transducer may produce ultrasound waveforms with substantial energy in a medium to be imaged. Use of such transducers in three-dimensional ping-based imaging may permit deeper and higher quality imaging than may be possible with conventional transducers.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: May 19, 2020
    Assignee: MAUI IMAGING, INC.
    Inventors: Donald F. Specht, Josef R. Call
  • Publication number: 20190370522
    Abstract: Ping-based imaging systems may be used for tracking motion of hard or soft objects within an imaged medium. Motion detection and motion tracking may be performed by defining fingerprint points and tracking the position of each fingerprint point based on the echoes of multiple transmitted pings.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventors: Josef R. CALL, Henry A. DAVIS, Donald F. SPECHT
  • Publication number: 20190328367
    Abstract: A Multiple Aperture Ultrasound Imaging system and methods of use are provided with any number of features. In some embodiments, a multi-aperture ultrasound imaging system is configured to transmit and receive ultrasound energy to and from separate physical ultrasound apertures. In some embodiments, a transmit aperture of a multi-aperture ultrasound imaging system is configured to transmit an omni-directional unfocused ultrasound waveform approximating a first point source through a target region. In some embodiments, the ultrasound energy is received with a single receiving aperture. In other embodiments, the ultrasound energy is received with multiple receiving apertures. Algorithms are described that can combine echoes received by one or more receiving apertures to form high resolution ultrasound images. Additional algorithms can solve for variations in tissue speed of sound, thus allowing the ultrasound system to be used virtually anywhere in or on the body.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Donald F. SPECHT, Kenneth D. BREWER
  • Patent number: 10380399
    Abstract: Ping-based imaging systems may be used for tracking motion of hard or soft objects within an imaged medium. Motion detection and motion tracking may be performed by defining fingerprint points and tracking the position of each fingerprint point based on the echoes of multiple transmitted pings.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: August 13, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: Josef R. Call, Henry A. Davis, Donald F. Specht
  • Patent number: 10342518
    Abstract: A Multiple Aperture Ultrasound Imaging system and methods of use are provided with any number of features. In some embodiments, a multi-aperture ultrasound imaging system is configured to transmit and receive ultrasound energy to and from separate physical ultrasound apertures. In some embodiments, a transmit aperture of a multi-aperture ultrasound imaging system is configured to transmit an omni-directional unfocused ultrasound waveform approximating a first point source through a target region. In some embodiments, the ultrasound energy is received with a single receiving aperture. In other embodiments, the ultrasound energy is received with multiple receiving apertures. Algorithms are described that can combine echoes received by one or more receiving apertures to form high resolution ultrasound images. Additional algorithms can solve for variations in tissue speed of sound, thus allowing the ultrasound system to be used virtually anywhere in or on the body.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: July 9, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: Donald F. Specht, Kenneth D. Brewer
  • Publication number: 20190200961
    Abstract: A method of full-field or “ping-based” Doppler ultrasound imaging allows for detection of Doppler signals indicating moving reflectors at any point in an imaging field without the need to predefine range gates. In various embodiments, such whole-field Doppler imaging methods may include transmitting a Doppler ping from a transmit aperture, receiving echoes of the Doppler ping with one or more separate receive apertures, detecting Doppler signals and determining the speed of moving reflectors. In some embodiments, the system also provides the ability to determine the direction of motion by solving a set of simultaneous equations based on echo data received by multiple receive apertures.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Applicant: MAUI IMAGING, INC.
    Inventors: Donald F. SPECHT, Kenneth D. BREWER, David M. SMITH, Josef R. CALL, Viet Nam LE, Bruce R. RITZI
  • Publication number: 20190175152
    Abstract: A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicant: MAUI IMAGING, INC.
    Inventors: David M. SMITH, Sharon L. ADAM, Donald F. SPECHT, Kenneth D. BREWER, John P. LUNSFORD, David J. SPECHT
  • Publication number: 20190083058
    Abstract: A combination of an ultrasonic scanner and an omnidirectional receive transducer for producing a two-dimensional image from received echoes is described. Two-dimensional images with different noise components can be constructed from the echoes received by additional transducers. These can be combined to produce images with better signal to noise ratios and lateral resolution. Also disclosed is a method based on information content to compensate for the different delays for different paths through intervening tissue is described. The disclosed techniques have broad application in medical imaging but are ideally suited to multi-aperture cardiac imaging using two or more intercostal spaces. Since lateral resolution is determined primarily by the aperture defined by the end elements, it is not necessary to fill the entire aperture with equally spaced elements. Multiple slices using these methods can be combined to form three-dimensional images.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Inventor: Donald F. SPECHT
  • Patent number: 10226234
    Abstract: A method of full-field or “ping-based” Doppler ultrasound imaging allows for detection of Doppler signals indicating moving reflectors at any point in an imaging field without the need to pre-define range gates. In various embodiments, such whole-field Doppler imaging methods may include transmitting a Doppler ping from a transmit aperture, receiving echoes of the Doppler ping with one or more separate receive apertures, detecting Doppler signals and determining the speed of moving reflectors. In some embodiments, the system also provides the ability to determine the direction of motion by solving a set of simultaneous equations based on echo data received by multiple receive apertures.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 12, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: Donald F. Specht, Kenneth D. Brewer, David M. Smith, Josef R. Call, Viet Nam Le, Bruce R. Ritzi
  • Patent number: 10206662
    Abstract: A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: February 19, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: David M. Smith, Sharon L. Adam, Donald F. Specht, Kenneth D. Brewer, John P. Lunsford, David J. Specht
  • Publication number: 20190021697
    Abstract: An apparent point-source transmit transducers comprises a substantially constant-thickness shell of piezoelectric material in a shape of a spherical-section. Such transducers may be sized such that a single apparent point-source transmit transducer may produce ultrasound waveforms with substantial energy in a medium to be imaged. Use of such transducers in three-dimensional ping-based imaging may permit deeper and higher quality imaging than may be possible with conventional transducers.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 24, 2019
    Inventors: Donald F. SPECHT, Josef R. CALL
  • Patent number: 10130333
    Abstract: A combination of an ultrasonic scanner and an omnidirectional receive transducer for producing a two-dimensional image from received echoes is described. Two-dimensional images with different noise components can be constructed from the echoes received by additional transducers. These can be combined to produce images with better signal to noise ratios and lateral resolution. Also disclosed is a method based on information content to compensate for the different delays for different paths through intervening tissue is described. The disclosed techniques have broad application in medical imaging but are ideally suited to multi-aperture cardiac imaging using two or more intercostal spaces. Since lateral resolution is determined primarily by the aperture defined by the end elements, it is not necessary to fill the entire aperture with equally spaced elements. Multiple slices using these methods can be combined to form three-dimensional images.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: November 20, 2018
    Assignee: MAUI IMAGING, INC.
    Inventor: Donald F. Specht
  • Publication number: 20180279998
    Abstract: A Multiple Aperture Ultrasound Imaging system and methods of use are provided with any number of features. In some embodiments, a multi-aperture ultrasound imaging system is configured to transmit and receive ultrasound energy to and from separate physical ultrasound apertures. In some embodiments, a transmit aperture of a multi-aperture ultrasound imaging system is configured to transmit an omni-directional unfocused ultrasound waveform approximating a first point source through a target region. In some embodiments, the ultrasound energy is received with a single receiving aperture. In other embodiments, the ultrasound energy is received with multiple receiving apertures. Algorithms are described that can combine echoes received by one or more receiving apertures to form high resolution ultrasound images. Additional algorithms can solve for variations in tissue speed of sound, thus allowing the ultrasound system to be used virtually anywhere in or on the body.
    Type: Application
    Filed: June 5, 2018
    Publication date: October 4, 2018
    Inventors: Donald F. SPECHT, Kenneth D. BREWER
  • Publication number: 20180153511
    Abstract: An apparent point-source transmit transducers comprises a substantially constant-thickness shell of piezoelectric material in a shape of a spherical-section. Such transducers may be sized such that a single apparent point-source transmit transducer may produce ultrasound waveforms with substantial energy in a medium to be imaged. Use of such transducers in three-dimensional ping-based imaging may permit deeper and higher quality imaging than may be possible with conventional transducers.
    Type: Application
    Filed: February 5, 2018
    Publication date: June 7, 2018
    Inventors: Donald F. SPECHT, Josef R. CALL
  • Patent number: 9986975
    Abstract: A Multiple Aperture Ultrasound Imaging system and methods of use are provided with any number of features. In some embodiments, a multi-aperture ultrasound imaging system is configured to transmit and receive ultrasound energy to and from separate physical ultrasound apertures. In some embodiments, a transmit aperture of a multi-aperture ultrasound imaging system is configured to transmit an omni-directional unfocused ultrasound waveform approximating a first point source through a target region. In some embodiments, the ultrasound energy is received with a single receiving aperture. In other embodiments, the ultrasound energy is received with multiple receiving apertures. Algorithms are described that can combine echoes received by one or more receiving apertures to form high resolution ultrasound images. Additional algorithms can solve for variations in tissue speed of sound, thus allowing the ultrasound system to be used virtually anywhere in or on the body.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: June 5, 2018
    Assignee: MAUI IMAGING, INC.
    Inventors: Donald F. Specht, Kenneth D. Brewer
  • Publication number: 20180068155
    Abstract: Ping-based imaging systems may be used for tracking motion of hard or soft objects within an imaged medium. Motion detection and motion tracking may be performed by defining fingerprint points and tracking the position of each fingerprint point based on the echoes of multiple transmitted pings.
    Type: Application
    Filed: March 30, 2016
    Publication date: March 8, 2018
    Inventors: Josef R. CALL, Henry A. DAVIS, Donald F. SPECHT