Patents by Inventor Donald Golini

Donald Golini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6956657
    Abstract: A method for accurately synthesizing a full-aperture data map from a series of overlapped sub-aperture data maps. In addition to conventional alignment uncertainties, a generalized compensation framework corrects a variety of errors, including compensators that are independent in each sub-aperture. Another class of compensators (interlocked) include coefficients that are the same across all the sub-apertures. A constrained least-squares optimization routine maximizes data consistency in sub-aperture overlap regions. The stitching algorithm includes constraints representative of the accuracies of the hardware to ensure that the results are within meaningful bounds. The constraints also enable the computation of estimates of uncertainties in the final results. The method therefore automatically calibrates the system, provides a full-aperture surface map, and an estimate of residual uncertainties.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: October 18, 2005
    Assignee: QED Technologies, Inc.
    Inventors: Donald Golini, Greg Forbes, Paul Murphy
  • Publication number: 20030117632
    Abstract: A method for accurately synthesizing a full-aperture data map from a series of overlapped sub-aperture data maps. In addition to conventional alignment uncertainties, a generalized compensation framework corrects a variety of errors, including compensators that are independent in each sub-aperture. Another class of compensators (interlocked) include coefficients that are the same across all the sub-apertures. A constrained least-squares optimization routine maximizes data consistency in sub-aperture overlap regions. The stitching algorithm includes constraints representative of the accuracies of the hardware to ensure that the results are within meaningful bounds. The constraints also enable the computation of estimates of uncertainties in the final results. The method therefore automatically calibrates the system, provides a full-aperture surface map, and an estimate of residual uncertainties.
    Type: Application
    Filed: November 25, 2002
    Publication date: June 26, 2003
    Applicant: QED Technologies Inc.
    Inventors: Donald Golini, Greg Forbes, Paul Murphy
  • Patent number: 6106380
    Abstract: A method and apparatus for finishing a workpiece surface using MR fluid is provided wherein the workpiece is positioned near a carrier surface such that a converging gap is defined between a portion of the workpiece surface and the carrier surface; a magnetic field is applied substantially at said gap; a flow of stiffened MR fluid is introduced into said converging gap such that a work zone is created in the MR fluid to form a sub-aperture transient finishing tool for engaging and causing material removal at the portion of the workpiece surface; and the workpiece or the work zone is moved relative to the other to expose different portions of the workpiece surface to the work zone for predetermined time periods to selectively finish said portions of said workpiece surface to predetermined degrees.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: August 22, 2000
    Assignee: Byelocorp Scientific, Inc.
    Inventors: Stephen David Jacobs, William Kordonski, Igor Victorovich Prokhorov, Donald Golini, Gennadii Rafailovich Gorodkin, Tvasta David Strafford
  • Patent number: 5971835
    Abstract: A fluid having magnetorheological (MR) properties and including a finely-divided abrasive material is directed through a non-ferromagnetic nozzle disposed axially of the helical windings of an electric solenoid. The MR fluid may contain magnetosoft or magnetosolid particles or mixtures thereof. A magnetic field created by the solenoid orients and aligns the magnetic moments of the particles to form fibrils thereby stiffening the flowing MR fluid which, when ejected from the nozzle, defines a highly-collimated jet. Collimation of the MR material persists for a significant time outside the magnetic field, permitting use of the abrasive jet to shape and/or polish the surface of a workpiece at some distance from the nozzle. The jet is directed into a shroud against a workpiece mounted for multiple-axis rotation and displacement to meet predetermined material removal needs for shaping. The solenoid may be similarly mounted to also move the jet over the surface of the workpiece.
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: October 26, 1999
    Assignee: QED Technologies, Inc.
    Inventors: William I. Kordonski, Donald Golini, Stephen Hogan, Arpad Sekeres
  • Patent number: 5951369
    Abstract: An improved system for increasing the effectiveness of magnetorheological finishing of a substrate. An inline flowmeter is close-loop linked to the rotational speed of a pressurizing pump to assure that the flow of magnetorheological fluid (MRF) to the work zone is constant. A simplified capillary viscometer is disposed in the fluid delivery system at the exit thereof onto the wheel surface. Output signals from the flowmeter and the viscometer pressure sensor are sent to a computer which calculates the viscosity of MRF being delivered to the work zone and causes replenishment of carrier fluid to the work-concentrated MRF to return the viscosity to aim to assure that a constant concentration of magnetic solids is being provided to the work zone.
    Type: Grant
    Filed: January 6, 1999
    Date of Patent: September 14, 1999
    Assignee: QED Technologies, Inc.
    Inventors: William I. Kordonski, Donald Golini, Stephen Hogan, Paul R. Dumas
  • Patent number: 5839944
    Abstract: A method and apparatus for finishing a workpiece surface using MR fluid is provided wherein the workpiece is positioned near a carrier surface such that a converging gap is defined between a portion of the workpiece surface and the carrier surface; a magnetic field is applied substantially at said gap; a flow of stiffened MR fluid is introduced into said converging gap such that a work zone is created in the MR fluid to form a sub-aperture transient finishing tool for engaging and causing material removal at the portion of the workpiece surface; and the workpiece or the work zone is moved relative to the other to expose different portions of the workpiece surface to the work zone for predetermined time periods to selectively finish said portions of said workpiece surface to predetermined degrees.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: November 24, 1998
    Assignees: Byelocorp, Inc., University of Rochester
    Inventors: Stephen David Jacobs, William Kordonski, Igor Victorovich Prokhorov, Donald Golini, Gennadii Rafailovich Gorodkin, Tvasta David Strafford
  • Patent number: 5804095
    Abstract: A magnetorheological fluid comprises non-colloidal magnetic particles, an abrasive, water, glycerol, and an alkaline buffer. The abrasive may be CeO.sub.2, the non-colloidal magnetic particles may be carbonyl iron, and the alkaline buffer may be Na.sub.2 CO.sub.3. The fluid is useful for magnetorheological finishing.
    Type: Grant
    Filed: December 12, 1996
    Date of Patent: September 8, 1998
    Assignees: Byelocorp Scientific, Inc., University of Rochester
    Inventors: Stephen David Jacobs, William Kordonski, Igor Victorovich Prokhorov, Donald Golini, Gennadii Rafailovich Gorodkin, Tvasta David Strafford
  • Patent number: 5795212
    Abstract: A method and apparatus for finishing a workpiece surface using MR fluid is provided wherein the workpiece is positioned near a carrier surface such that a converging gap is defined between a portion of the workpiece surface and the carrier surface; a magnetic field is applied substantially at said gap; a flow of stiffened MR fluid is introduced into said converging gap such that a work zone is created in the MR fluid to form a sub-aperture transient finishing tool for engaging and causing material removal at the portion of the workpiece surface; and the workpiece or the work zone is moved relative to the other to expose different portions of the workpiece surface to the work zone for predetermined time periods to selectively finish said portions of said workpiece surface to predetermined degrees.
    Type: Grant
    Filed: October 16, 1995
    Date of Patent: August 18, 1998
    Assignees: Byelocorp Scientific, Inc., University of Rochester
    Inventors: Stephen David Jacobs, William Kordonski, Igor Victorovich Prokhorov, Donald Golini, Gennadii Rafailovich Gorodkin, Tvasta David Strafford