Patents by Inventor Donald Hopper

Donald Hopper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060247704
    Abstract: A system and method for automatically adjusting the operating parameters of a rate-adaptive cardiac pacemaker. In accordance with the method, maximum exertion levels attained by the patient are measured at periodic intervals and stored. The stored maximum exertion levels may then be used to update a long-term maximal exertion level, and the slope of the rate-response curve is adjusted to map the updated long-term maximal exertion level to a maximum allowable pacing rate. The stored maximum exertion levels may also be used to update a sensor target rate which is used to adjust the slope of the rate response curve.
    Type: Application
    Filed: July 13, 2006
    Publication date: November 2, 2006
    Inventors: Weimin Sun, Bruce Jones, Douglas Lang, Donald Hopper
  • Publication number: 20060195149
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Inventors: Donald Hopper, John Voegele, Jesse Hartley, Avram Scheiner
  • Patent number: 7079897
    Abstract: A system and method for automatically adjusting the operating parameters of a rate-adaptive cardiac pacemaker. In accordance with the method, maximum exertion levels attained by the patient are measured at periodic intervals and stored. The stored maximum exertion levels may then be used to update a long-term maximal exertion level, and the slope of the rate-response curve is adjusted to map the updated long-term maximal exertion level to a maximum allowable pacing rate. The stored maximum exertion levels may also be used to update a sensor target rate which is used to adjust the slope of the rate response curve.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: July 18, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Weimin Sun, Bruce R. Jones, Douglas J. Lang, Donald Hopper
  • Publication number: 20060116593
    Abstract: Cardiac monitoring and/or stimulation methods and systems that provide one or more of monitoring, diagnosing, defibrillation, and pacing. Cardiac signal separation is employed to detect, monitor, track and/or trend ischemia using cardiac activation sequence information. Ischemia detection may involve sensing composite cardiac signals using implantable electrodes, and performing a signal separation that produces one or more cardiac activation signal vectors associated with one or more cardiac activation sequences. A change in the signal vector may be detected using subsequent separations. The change may be an elevation or depression of the ST segment of a cardiac cycle or other change indicative of myocardial ischemia, myocardial infarction, or other pathological change. The change may be used to predict, quantify, and/or qualify an event such as an arrhythmia, a myocardial infarction, or other pathologic change. Information associated with the vectors may be stored and used to track the vectors.
    Type: Application
    Filed: March 14, 2005
    Publication date: June 1, 2006
    Inventors: Yi Zhang, Scott Meyer, Jeffrey Stahmann, Carlos Ricci, Marina Brockway, Aaron McCabe, Yinghong Yu, Donald Hopper
  • Publication number: 20060036290
    Abstract: An implantable cardiac device is configured and programmed to assess a patient's cardiopulmonary function by evaluating the patient's minute ventilation response. Such evaluation may be performed by computing a minute ventilation response slope, defined as the ratio of an incremental change in minute ventilation to an incremental change in measured activity level. The minute ventilation response slope may then be compared with a normal range to assess the patient's functional status.
    Type: Application
    Filed: August 12, 2004
    Publication date: February 16, 2006
    Inventors: Donald Hopper, Bruce Wilkoff, Richard Morris
  • Publication number: 20060030892
    Abstract: An implantable cardiac device is configured and programmed to assess a patient's cardiopulmonary function by evaluating the patient's heart rate response. Such evaluation may be performed by computing a heart rate response slope, defined as the ratio of an incremental change in intrinsic heart rate to an incremental change in measured activity level. The heart rate response slope may then be compared with a normal range to assess the patient's functional status.
    Type: Application
    Filed: August 9, 2004
    Publication date: February 9, 2006
    Inventors: Veerichetty Kadhiresan, Donald Hopper, Richard Fogoros, Lemont Baker
  • Publication number: 20060020295
    Abstract: A system receives signals indicative of cardiopulmonary conditions sensed by a plurality of sensors and provides for monitoring and automated differential diagnosis of the cardiopulmonary conditions based on the signals. Cardiogenic pulmonary edema is detected based on one or more signals sensed by implantable sensors. If the cardiogenic pulmonary edema is not detected, obstructive pulmonary disease and restrictive pulmonary disease are each detected based on a forced vital capacity (FVC) parameter and a forced expiratory volume (FEV) parameter measured from a respiratory signal sensed by an implantable or non-implantable sensor. In one embodiment, an implantable medical device senses signals indicative of the cardiopulmonary conditions, and an external system detects the cardiopulmonary conditions based on these signals by executing an automatic detection algorithm.
    Type: Application
    Filed: July 23, 2004
    Publication date: January 26, 2006
    Inventors: Marina Brockway, Donald Hopper, Gerrard Carlson, Veerichetty Kadhiresan, Kenneth Beck
  • Publication number: 20050267541
    Abstract: An implantable cardiac device with an exertion level sensor is programmed to determine a heart rate appropriate for a given measured exertion level in accordance with a physiological model and/or previously collected physiologic data. The device then compares the model's heart rate with a measured intrinsic heart rate. Based upon this data, the device is able to recognize changes in the patient's heart rate response and predict or recognize a chronotropically incompetent condition.
    Type: Application
    Filed: May 25, 2004
    Publication date: December 1, 2005
    Inventors: Avram Scheiner, Donald Hopper
  • Publication number: 20050090719
    Abstract: An implantable device monitors the balance between sympathetic tone and parasympathetic tone as a function of an activity level. Cardio-neurological healthy users exhibit a generally sympathetic tone in conjunction with heavy activity level and a generally parasympathetic tone in conjunction with periods of low activity level. Deviations from expected results are associated with a health problem. Measured conditions are stored and available for subsequent reporting to a remote programmer. Therapy delivered by an implantable device is determined as a function of the relationship between autonomic balance and activity level.
    Type: Application
    Filed: October 28, 2003
    Publication date: April 28, 2005
    Inventors: Avram Scheiner, Donald Hopper, Gerrard Carlson
  • Patent number: 6839593
    Abstract: A system and method for automatically adjusting the operating parameters of a rate-adaptive cardiac pacemaker in which maximum exertion levels attained by the patient are measured at periodic intervals and stored. The stored maximum exertion levels may then be used to update a long-term maximal exertion level, and the slope of the rate-response curve is adjusted to map the updated long-term maximal exertion level to a maximum allowable pacing rate. In accordance with the invention, the rate response curve is defined such that an exertion level corresponding to the patient's maximum exercise capacity would be mapped to a physiologically favorable maximum rate that is independent from a specified maximum sensor indicated rate.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: January 4, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Weimin Sun, Bruce R. Jones, Douglas J. Lang, Donald Hopper
  • Patent number: 6823214
    Abstract: A system and method for automatically adjusting the operating parameters of a rate-adaptive cardiac pacemaker. In accordance with the method, maximum exertion levels attained by the patient are measured at periodic intervals and stored. The stored maximum exertion levels may then be used to update a long-term maximal exertion level, and the slope of the rate-response curve is adjusted to map the updated long-term maximal exertion level to a maximum allowable pacing rate. The stored maximum exertion levels may also be used to update a sensor target rate which is used to adjust the slope of the rate response curve.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: November 23, 2004
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Weimin Sun, Bruce R. Jones, Douglas J. Lang, Donald Hopper
  • Publication number: 20040230240
    Abstract: A system and method for automatically adjusting the operating parameters of a rate-adaptive cardiac pacemaker. In accordance with the method, maximum exertion levels attained by the patient are measured at periodic intervals and stored. The stored maximum exertion levels may then be used to update a long-term maximal exertion level, and the slope of the rate-response curve is adjusted to map the updated long-term maximal exertion level to a maximum allowable pacing rate. The stored maximum exertion levels may also be used to update a sensor target rate which is used to adjust the slope of the rate response curve.
    Type: Application
    Filed: May 6, 2004
    Publication date: November 18, 2004
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Weimin Sun, Bruce R. Jones, Douglas J. Lang, Donald Hopper