Patents by Inventor Donald Ingber

Donald Ingber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230355540
    Abstract: The present invention relates to a shear-activated nanotherapeutic (SA-NT) for use in treating stroke by increasing blood supply to the brain via collateral vessels, wherein the SA-NT comprises an aggregate comprising a plurality of nanoparticles, the aggregate further comprising one or more vasodilating agents or pharmaceutically acceptable salts thereof; wherein the aggregate is configured to disaggregate above a predetermined shear stress.
    Type: Application
    Filed: September 28, 2021
    Publication date: November 9, 2023
    Inventors: Daniel Beard, Donald Ingber, Oktay Uzun, Frank Bobe
  • Patent number: 11788800
    Abstract: A radiant cooling device comprises at least one fluidic layer including one or more micro-channel liquid-circuits and at least one structural layer coupled to the at least one fluidic layer. The device further includes a plurality of folds such that the device has a three-dimensional surface geometry having a plurality of inclined surfaces.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: October 17, 2023
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Jonathan Grinham, Martin Bechthold, Salmaan Craig, Donald Ingber
  • Patent number: 10982100
    Abstract: A self-healing, scratch resistant slippery surface that is manufactured by wicking a chemically-inert, high-density liquid coating over a roughened solid surface featuring micro and nanoscale topographies is described. Such a slippery surface shows anti-wetting properties, as well as exhibits significant reduction of adhesion of a broad range of biological materials, including particles in suspension or solution. Specifically, the slippery surfaces can be applied to medical devices and equipment to effectively repel biological materials such as blood, and prevent, reduce, or delay coagulation and surface-mediated clot formation. Moreover, the slippery surfaces can be used to prevent fouling by microorganisms such as bacteria.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: April 20, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Benjamin Hatton, Donald Ingber, Michael Super, Tak Sing Wong
  • Publication number: 20200291246
    Abstract: A self-healing, scratch resistant slippery surface that is manufactured by wicking a chemically-inert, high-density liquid coating over a roughened solid surface featuring micro and nanoscale topographies is described. Such a slippery surface shows anti-wetting properties, as well as exhibits significant reduction of adhesion of a broad range of biological materials, including particles in suspension or solution. Specifically, the slippery surfaces can be applied to medical devices and equipment to effectively repel biological materials such as blood, and prevent, reduce, or delay coagulation and surface-mediated clot formation. Moreover, the slippery surfaces can be used to prevent fouling by microorganisms such as bacteria.
    Type: Application
    Filed: February 3, 2020
    Publication date: September 17, 2020
    Inventors: Joanna AIZENBERG, Benjamin HATTON, Donald INGBER, Michael SUPER, Tak Sing WONG
  • Publication number: 20200271395
    Abstract: A radiant cooling device comprises at least one fluidic layer including one or more micro-channel liquid-circuits and at least one structural layer coupled to the at least one fluidic layer. The device further includes a plurality of folds such that the device has a three-dimensional surface geometry having a plurality of inclined surfaces.
    Type: Application
    Filed: July 10, 2018
    Publication date: August 27, 2020
    Inventors: Jonathan Grinham, Martin Bechthold, Salmaan Craig, Donald Ingber
  • Patent number: 10550272
    Abstract: A self-healing, scratch resistant slippery surface that is manufactured by wicking a chemically-inert, high-density liquid coating over a roughened solid surface featuring micro and nanoscale topographies is described. Such a slippery surface shows anti-wetting properties, as well as exhibits significant reduction of adhesion of a broad range of biological materials, including particles in suspension or solution. Specifically, the slippery surfaces can be applied to medical devices and equipment to effectively repel biological materials such as blood, and prevent, reduce, or delay coagulation and surface-mediated clot formation. Moreover, the slippery surfaces can be used to prevent fouling by microorganisms such as bacteria.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: February 4, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Benjamin Hatton, Donald Ingber, Michael Super, Tak Sing Wong
  • Publication number: 20190145980
    Abstract: The invention relates to methods of detection, capture, isolation and targeting of cancer cells for example circulating tumor cells (CTCs) using carbohydrate recognition domain of a lectin. The invention relates to methods of diagnosis, prognosis and treatment of cancer.
    Type: Application
    Filed: April 10, 2017
    Publication date: May 16, 2019
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joo Hun KANG, Donald INGBER, Michael SUPER, Alexander WATTERS, Harry DRISCOLL
  • Patent number: 10245355
    Abstract: Articles, methods of making, and uses for modifying surfaces for liquid repellency are disclosed. The liquid repellant surfaces comprise a surface comprising an anchoring layer. The anchoring layer, which forms an immobilized molecular anchoring layer on the surface, has anchoring molecules, where each anchoring molecule has a head group that is covalently linked to the surface and a functional tail group. The anchoring molecules are crosslinked to each other to form a crosslinked network. The functional tail group has an affinity for a lubricating liquid, which is applied to the treated surface to form a lubricating layer. The anchoring layer and replenishable lubricating liquid are held together by non-covalent attractive forces. Together, these layers form an ultra-repellant slippery surface that repels certain immiscible liquids and prevents adsorption, coagulation, and surface fouling by components contained within.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 2, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Donald Ingber, Daniel C. Leslie, Michael Super, Alexander L. Watters, Anna Waterhouse
  • Publication number: 20180298203
    Abstract: A self-healing, scratch resistant slippery surface that is manufactured by wicking a chemically-inert, high-density liquid coating over a roughened solid surface featuring micro and nanoscale topographies is described. Such a slippery surface shows anti-wetting properties, as well as exhibits significant reduction of adhesion of a broad range of biological materials, including particles in suspension or solution. Specifically, the slippery surfaces can be applied to medical devices and equipment to effectively repel biological materials such as blood, and prevent, reduce, or delay coagulation and surface-mediated clot formation. Moreover, the slippery surfaces can be used to prevent fouling by microorganisms such as bacteria.
    Type: Application
    Filed: April 3, 2018
    Publication date: October 18, 2018
    Inventors: Joanna AIZENBERG, Benjamin HATTON, Donald INGBER, Michael SUPER, Tak Sing WONG
  • Patent number: 9932484
    Abstract: A self-healing, scratch resistant slippery surface that is manufactured by wicking a chemically-inert, high-density liquid coating over a roughened solid surface featuring micro and nanoscale topographies is described. Such a slippery surface shows anti-wetting properties, as well as exhibits significant reduction of adhesion of a broad range of biological materials, including particles in suspension or solution. Specifically, the slippery surfaces can be applied to medical devices and equipment to effectively repel biological materials such as blood, and prevent, reduce, or delay coagulation and surface-mediated clot formation. Moreover, the slippery surfaces can be used to prevent fouling by microorganisms such as bacteria.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: April 3, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Benjamin Hatton, Donald Ingber, Michael Super, Tak Sing Wong
  • Publication number: 20160311877
    Abstract: Described herein are engineered microbe-targeting molecules, microbe-targeting articles, kits comprising the same, and uses thereof. Such microbe-targeting molecules, microbe-targeting articles, or the kits comprising the same can bind or capture of a microbe or microbial matter thereof, and can thus be used in various applications, such as diagnosis or treatment of an infection caused by microbes in a subject or any environmental surface.
    Type: Application
    Filed: December 18, 2014
    Publication date: October 27, 2016
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Alexander WATTERS, Donald INGBER, Mark CARTWRIGHT, Michael SUPER, Martin ROTTMAN, Evangelina MURRAY, Brendon DUSEL
  • Publication number: 20160271314
    Abstract: A miniaturized, integrated, microfluidic device pulls materials bound to magnetic particles from one laminar flow path to another by applying a local magnetic field gradient. The device removes microbial and mammalian cells from flowing biological fluids without any wash steps. A microfabricated high-gradient magnetic field concentrator (HGMC) is integrated at one side of a microfluidic channel. When magnetic particles are introduced into one flow path, they remain limited to that flow path. When the HGMC is magnetized, the magnetic beads are pulled from the initial flow path into the collection stream, thereby cleansing the fluid. The microdevice allows large numbers of beads and materials to be sorted simultaneously, has no capacity limit, does not lose separation efficiency as particles are removed, and is useful for cell separations from blood and other biological fluids. This on-chip separator allows cell separations to be performed in the field outside of hospitals and laboratories.
    Type: Application
    Filed: October 23, 2015
    Publication date: September 22, 2016
    Inventors: Donald INGBER, Shannon XIA, Tom P. HUNT, Robert WESTERVELT
  • Publication number: 20160144079
    Abstract: Articles, methods of making, and uses for modifying surfaces for liquid repellency are disclosed. The liquid repellant surfaces comprise a surface comprising an anchoring layer. The anchoring layer, which forms an immobilized molecular anchoring layer on the surface, has anchoring molecules, where each anchoring molecule has a head group that is covalently linked to the surface and a functional tail group. The anchoring molecules are crosslinked to each other to form a crosslinked network. The functional tail group has an affinity for a lubricating liquid, which is applied to the treated surface to form a lubricating layer. The anchoring layer and replenishable lubricating liquid are held together by non-covalent attractive forces. Together, these layers form an ultra-repellant slippery surface that repels certain immiscible liquids and prevents adsorption, coagulation, and surface fouling by components contained within.
    Type: Application
    Filed: July 10, 2014
    Publication date: May 26, 2016
    Inventors: Donald INGBER, Daniel C. LESLIE, Michael SUPER, Alexander L. WATTERS, Anna WATERHOUSE
  • Publication number: 20150173883
    Abstract: Articles, methods of making, and uses for modifying surfaces for simultaneously providing repellency and selective binding of desired moieties are disclosed. The repellant surfaces comprise a substrate and a lubricating layer immobilized over the substrate surface having a lubricating liquid having an affinity with the substrate. The substrate and the lubricating liquid are attracted to each other together by non-covalent attractive forces. The repellent surface further includes a binding group extending over the surface of the lubricating layer and the binding group has an affinity with a target moiety. The lubricating layer and the substrate form a slippery or repellent surface configured and arranged for contact with a material that is immiscible with the lubricating liquid and the immiscible material contains the target moiety.
    Type: Application
    Filed: July 12, 2013
    Publication date: June 25, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: Donald Ingber, Michael Super, Daniel C. Leslie, Tohid Didar, Alexander L. Watters, Julia Bellows Berthet, Anna Waterhouse
  • Publication number: 20140342954
    Abstract: Articles, methods of making, and uses for modifying surfaces for liquid repellency are disclosed. The liquid repellant surfaces comprise a surface comprising an anchoring layer. The anchoring layer, which forms an immobilized molecular anchoring layer on the surface, has a head group that is covalently linked to, or adsorbed onto, the surface and a functional group. The functional group of the treated surface has an affinity for a lubricating layer, which is applied to the treated surface. The anchoring layer and replenishable lubricating layer are held together by non-covalent attractive forces. Together, these layers form an ultra-repellant slippery surface that repels certain immiscible liquids and prevents adsorption, coagulation, and surface fouling by components contained within.
    Type: Application
    Filed: January 10, 2013
    Publication date: November 20, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald Ingber, Daniel C. Leslie, Alexander L. Watters, Michael Super, Joanna Aizenberg, Michael Aizenberg, Philseok Kim, Anna Waterhouse
  • Publication number: 20140187666
    Abstract: A self-healing, scratch resistant slippery surface that is manufactured by wicking a chemically-inert, high-density liquid coating over a roughened solid surface featuring micro and nanoscale topographies is described. Such a slippery surface shows anti-wetting properties, as well as exhibits significant reduction of adhesion of a broad range of biological materials, including particles in suspension or solution. Specifically, the slippery surfaces can be applied to medical devices and equipment to effectively repel biological materials such as blood, and prevent, reduce, or delay coagulation and surface-mediated clot formation. Moreover, the slippery surfaces can be used to prevent fouling by microorganisms such as bacteria.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 3, 2014
    Applicant: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Benjamin Hatton, Donald Ingber, Michael Super, Tak Sing Wong
  • Publication number: 20060210595
    Abstract: The invention provides a device for adhering cells in a specific and predetermined position, and associated methods. The device includes a plate defining a surface and a plurality of cytophilic islands that adhere cells, isolated by cytophobic regions to which cells do not adhere, contiguous with the cytophilic islands. The islands or the regions or both may be formed of a self-assembled monolayer (SAM).
    Type: Application
    Filed: January 13, 2006
    Publication date: September 21, 2006
    Inventors: Rahul Singhvi, Amit Kumar, George Whitesides, Donald Ingber, Gabriel Lopez, Daniel Wang, Gregory Stephanopoulos
  • Publication number: 20060141000
    Abstract: Polymeric materials are used to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases.
    Type: Application
    Filed: February 10, 2004
    Publication date: June 29, 2006
    Inventors: Antonios Mikos, Donald Ingber, Joseph Vacanti, Robert Langer
  • Publication number: 20060098011
    Abstract: A method for displaying large amounts of information. The method includes the steps of forming a spatial layout of tiles each corresponding to a representative reference element; mapping observed elements onto the spatial layout of tiles of representative reference elements; assigning a respective value to each respective tile of the spatial layout of the representative elements; and displaying an image of the spatial layout of tiles of representative elements. Each tile includes atomic attributes of representative elements. The invention also relates to an apparatus for displaying large amounts of information.
    Type: Application
    Filed: April 18, 2005
    Publication date: May 11, 2006
    Applicant: Children' s Medical Center Corporation
    Inventors: Donald Ingber, Sui Huang, Gabriel Eichler
  • Patent number: 6802867
    Abstract: Disclosed is an orthopedic implant suitable for arthroplasty procedures. The orthopedic implant includes a first plate, a second plate, an axial support between the first plate and the second plate and one or more torsional supports connecting the first plate and the second plate. The axial support may be, for example, one or more flexible struts, such as cables, or a ball and socket joint. The torsional supports connect the first and second plates and may be, for example, curved around the axial support. The torsional supports may be integrally formed with the first and second plates as a single unitary device, by, for example, a Laser Engineered Net Shape (LENS) process.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: October 12, 2004
    Assignee: DePuy AcroMed, Inc.
    Inventors: Mark Manasas, Keith Oslakovic, Cornel Sultan, John Hamilton, Donald Ingber