Patents by Inventor Donald J. Olgado
Donald J. Olgado has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7497932Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.Type: GrantFiled: June 27, 2006Date of Patent: March 3, 2009Assignee: Applied Materials, Inc.Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Anna Marie Lloyd, legal representative, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier, Mark Lloyd
-
Patent number: 7005046Abstract: A system is provided in which a smaller flow of deposition solution is diverted from a larger flow of deposition solution flowing on an electrochemical deposition tool platform. The smaller flow is diverted to a dosing unit which may be on a separate platform. The dosing unit in one embodiment comprises a pressurized flow line.Type: GrantFiled: August 13, 2002Date of Patent: February 28, 2006Assignee: Applied Materials Inc.Inventors: Joseph J. Stevens, Yevgeniy Rabinovich, Sandy S. Chao, Mark R. Denome, Allen L. D'Ambra, Donald J. Olgado
-
Patent number: 6824612Abstract: A method and apparatus for plating substrates, wherein the apparatus includes a central substrate transfer enclosure having at least one substrate transfer robot positioned therein. A substrate activation chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. A substrate plating chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. A substrate spin rinse dry chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot, and an annealing chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. At least one substrate pod loader in communication with the substrate transfer chamber and accessible to the at least one substrate transfer robot is also provided.Type: GrantFiled: December 26, 2001Date of Patent: November 30, 2004Assignee: Applied Materials, Inc.Inventors: Joseph J. Stevens, Dmitry Lubomirsky, Ian Pancham, Donald J. Olgado, Howard E. Grunes, Yeuk-Fai Edwin Mok, Girish Dixit
-
Publication number: 20040084301Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.Type: ApplicationFiled: October 20, 2003Publication date: May 6, 2004Applicant: APPLIED MATERIALS, INC.Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Anna Marie Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
-
Patent number: 6635157Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.Type: GrantFiled: May 29, 2001Date of Patent: October 21, 2003Assignee: Applied Materials, Inc.Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
-
Patent number: 6612014Abstract: An apparatus and associated method for securing a wafer to a SRD spider, the SRD spider has a plurality of spider arms. The apparatus includes a plurality of spaced surfaces disposed on a distal end of one of the spider arms, each of the surfaces being spaced perpendicularly from the longitudinal axis of the spider arm. In one aspect, the two surfaces are positioned to limit production of a wedging force between that spaced surface and the wafer. In one embodiment, a post at least partially defines each one of the plurality of spaced surfaces.Type: GrantFiled: July 12, 2000Date of Patent: September 2, 2003Assignee: Applied Materials, Inc.Inventors: Bernardo Donoso, Joseph J. Stevens, Donald J. Olgado, Alexander Sou-Kang Ko
-
Publication number: 20030118732Abstract: A method and apparatus for plating substrates, wherein the apparatus includes a central substrate transfer enclosure having at least one substrate transfer robot positioned therein. A substrate activation chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. A substrate plating chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. A substrate spin rinse dry chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot, and an annealing chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. At least one substrate pod loader in communication with the substrate transfer chamber and accessible to the at least one substrate transfer robot is also provided.Type: ApplicationFiled: December 26, 2001Publication date: June 26, 2003Inventors: Joseph J. Stevens, Dmitry Lubomirsky, Ian Pancham, Donald J. Olgado, Howard E. Grunes, Yeuk-Fai Edwin Mok, Girish Dixit
-
Patent number: 6571657Abstract: The present invention provides an apparatus and associated method in which the apparatus comprises a multiple blade robot and a compensating device. The multiple blade robot includes at least one set of robot blades. The compensating device adjusts for differences in spacing between the set of robot blades and spacing between two or more cells. In different embodiments, the compensating device may be coupled to one or more of the process cells, one or more of the substrate holder systems, or one or more of the robot blades.Type: GrantFiled: September 18, 2000Date of Patent: June 3, 2003Assignee: Applied Materials Inc.Inventors: Donald J. Olgado, Avi Tepman, Timothy J. Franklin
-
Patent number: 6517130Abstract: In one aspect, a vacuum chuck supports a substrate on an end effector, the vacuum chuck comprising a position reference structure and a suction cup. The position reference structure is mounted to the surface and comprises a reference surface. The suction cup is located proximate the reference surface and comprising a suction mount. In another aspect, a method of chucking a substrate to a vacuum chuck is provided. The vacuum chuck comprises a suction cup and a position reference structure. The method comprises attaching the suction cup to the substrate to form a seal therebetween. The suction cup is deformed such that the substrate contacts the position reference structure. The substrate is then leveled on the position reference structure.Type: GrantFiled: March 14, 2000Date of Patent: February 11, 2003Assignee: Applied Materials, Inc.Inventors: Bernardo Donoso, Joseph J. Stevens, Donald J. Olgado, Mark Denome
-
Publication number: 20030000841Abstract: A system is provided in which a smaller flow of deposition solution is diverted from a larger flow of deposition solution flowing on an electrochemical deposition tool platform. The smaller flow is diverted to a dosing unit which may be on a separate platform. The dosing unit in one embodiment comprises a pressurized flow line.Type: ApplicationFiled: August 13, 2002Publication date: January 2, 2003Applicant: Applied Materials, Inc.Inventors: Joseph J. Stevens, Yevgeniy Rabinovich, Sandy S. Chao, Mark R. Denome, Allen L. D'Ambra, Donald J. Olgado
-
Patent number: 6454927Abstract: A system is provided in which a smaller flow of deposition solution is diverted from a larger flow of deposition solution flowing on an electro-chemical deposition tool platform. The smaller flow is diverted to a dosing unit which may be on a separate platform. The dosing unit in one embodiment comprises a pressurized flow line.Type: GrantFiled: June 26, 2000Date of Patent: September 24, 2002Assignee: Applied Materials, Inc.Inventors: Joseph J. Stevens, Yevgeniy Rabinovich, Sandy S. Chao, Mark R. Denome, Allen L. D'Ambra, Donald J. Olgado
-
Patent number: 6432282Abstract: The present invention relates to a device that supplies electricity to a substrate. In one embodiment, the device includes multiple contacts, a current sensor, and a current regulator. The current sensor is attached to each of the plurality of contacts to sense their electric current. A current regulator controls current applied to each of the multiple contacts in response to the current sensor. In another embodiment, a compliant ridge is formed about the periphery of each contact to seal the contact from undesired chemicals.Type: GrantFiled: March 2, 2000Date of Patent: August 13, 2002Assignee: Applied Materials, Inc.Inventors: Shamouil Shamouilian, Anada H. Kumar, Donald J. Olgado, Joseph J. Stevens, Ricardo Leon, Jon Clinton
-
Publication number: 20020066664Abstract: The present invention relates to a device that supplies electricity to a substrate. In one embodiment, the device includes multiple contacts, a current sensor, and a current regulator. The current sensor is attached to each of the plurality of contacts to sense their electric current. A current regulator controls current applied to each of the multiple contacts in response to the current sensor. In another embodiment, a compliant ridge is formed about the periphery of each contact to seal the contact from undesired chemicals.Type: ApplicationFiled: October 26, 2001Publication date: June 6, 2002Applicant: Applied Materials, Inc.Inventors: Shamouil Shamouilian, Anada H. Kumar, Donald J. Olgado, Joseph J. Stevens, Ricardo Leon, Jon Clinton
-
Patent number: 6369493Abstract: A plasma applicator having a tube that is surrounded by a cooling jacket such that a volume is defined proximate the tube. The volume is filled with a thermal transfer medium to couple heat from the tube to the cooling jacket. The cooling jacket contains an aperture through which energy is transmitted to a process gas contained in the tube. As such, the process gas is infused with energy and a plasma is formed in the tube.Type: GrantFiled: April 27, 1999Date of Patent: April 9, 2002Assignee: Applied Materials, Inc.Inventors: Dmitry Lubomirsky, Harald Herchen, Simon Yavelberg, David Palagashvili, Donald J. Olgado
-
Publication number: 20020029961Abstract: The present invention provides an electrochemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electrochemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electrochemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electrochemical deposition process and the components of the electrochemical deposition system.Type: ApplicationFiled: May 29, 2001Publication date: March 14, 2002Applicant: Applied Materials, Inc.Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Anna Marie Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
-
Patent number: 6258220Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.Type: GrantFiled: April 8, 1999Date of Patent: July 10, 2001Assignee: Applied Materials, Inc.Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier