Patents by Inventor Donald Keck

Donald Keck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8740029
    Abstract: Axial tension is applied to an optical fiber that had been scored at the intended cleave location, wherein the axial tension is applied in a time-varying manner to maintain the stress intensity factor for crack on the fiber within an acceptable level to produce a stable crack growth at a reasonable rate to cleave the fiber without requiring polishing of the end surface. Careful control of the applied tension force with time acts to control the velocity of the propagating crack by maintaining substantially constant stress intensity factor. The applied axial tension force is reduced with time and/or crack growth (as crack propagates). As a result, the strain energy in the fiber material is released by formation of a single plane with an optical quality surface without requiring polishing. A substantially flat optical surface of enhanced optical quality is formed at the cleaved end of the optical fiber.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: June 3, 2014
    Assignee: Nanoprecision Products, Inc.
    Inventors: Michael K. Barnoski, Suresh T. Gulati, King-Fu Hii, Donald Keck, William R. Powell, R. Ryan Vallance
  • Publication number: 20120000956
    Abstract: Axial tension is applied to an optical fiber that had been scored at the intended cleave location, wherein the axial tension is applied in a time-varying manner to maintain the stress intensity factor for crack on the fiber within an acceptable level to produce a stable crack growth at a reasonable rate to cleave the fiber without requiring polishing of the end surface. Careful control of the applied tension force with time acts to control the velocity of the propagating crack by maintaining substantially constant stress intensity factor. The applied axial tension force is reduced with time and/or crack growth (as crack propagates). As a result, the strain energy in the fiber material is released by formation of a single plane with an optical quality surface without requiring polishing. A substantially flat optical surface of enhanced optical quality is formed at the cleaved end of the optical fiber.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 5, 2012
    Inventors: Michael K. Barnoski, Suresh T. Gulati, King-Fu Hii, Donald Keck, William R. Powell, R. Ryan Vallance
  • Patent number: 6065310
    Abstract: This invention relates to a high throughput glass fiber production system and process to provide optimum glass delivery to the glass fiberizing bushing and enhanced glass production of textile fibers or filaments of glass. The fiberizing system includes dual melters which feed the molten glass through various screens within a high throughput feed bushing positioned below the melters to reduce seeds and condition the glass. The feed bushing directs the molten glass into a dual flow diverter for supplying the molten glass into the optimum location of the glass fiberizing bushings placed below the dual flow diverter.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: May 23, 2000
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: James Melvin Higginbotham, Richard Francis Finck, James Donald Keck, Michael Walden Morrison, Michael Blaise Fazio, David Tilton Mercer