Patents by Inventor Donald R. Letourneau

Donald R. Letourneau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10078183
    Abstract: The disclosure relates to semiconductor structures and, more particularly, to waveguide structures used in phonotics chip packaging and methods of manufacture. The structure includes: a first die comprising photonics functions including a waveguide structure; a second die bonded to the first die and comprising CMOS logic functions; and an optical fiber optically coupled to the waveguide structure and positioned within a cavity formed in the second die.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: September 18, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shawn A. Adderly, Samantha D. DiStefano, Jeffrey P. Gambino, Prakash Periasamy, Donald R. Letourneau
  • Publication number: 20170168242
    Abstract: The disclosure relates to semiconductor structures and, more particularly, to waveguide structures used in phonotics chip packaging and methods of manufacture. The structure includes: a first die comprising photonics functions including a waveguide structure; a second die bonded to the first die and comprising CMOS logic functions; and an optical fiber optically coupled to the waveguide structure and positioned within a cavity formed in the second die.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Inventors: Shawn A. Adderly, Samantha D. DiStefano, Jeffrey P. Gambino, Prakash Periasamy, Donald R. Letourneau
  • Patent number: 9553061
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to wire bond pad structures and methods of manufacture. The structure includes: bond pads in an active region of a chip; test pad structures in a kerf region of the chip; and hardmask material in the kerf region between the test pad structures and the bond pads. The surfaces of the test pad structures and the bond pads are devoid of the hardmask material.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 24, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Donald R. Letourneau, Patrick S. Spinney, Leah J. Bagley, John M. Sutton
  • Patent number: 8927411
    Abstract: A semiconductor fuse device and a method of fabricating the fuse device including a last metal interconnect layer including at least two discrete metal conductors, an inter-level dielectric layer deposited over the last metal interconnect layer and the at least two discrete metal conductors, a thin wire aluminum fuse connecting the at least two discrete metal conductors, and a fuse opening above the aluminum fuse.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Felix P. Anderson, Timothy H. Daubenspeck, Jeffrey P. Gambino, Timothy S. Hayes, Donald R. Letourneau, Thomas L. McDevitt, Anthony K. Stamper
  • Patent number: 8921975
    Abstract: A semiconductor fuse device and a method of fabricating the fuse device including a last metal interconnect layer including at least two discrete metal conductors, an inter-level dielectric layer deposited over the last metal interconnect layer and the at least two discrete metal conductors, a thin wire aluminum fuse connecting the at least two discrete metal conductors, and a fuse opening above the aluminum fuse.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Felix P. Anderson, Timothy H. Daubenspeck, Jeffrey P. Gambino, Timothy S. Hayes, Donald R. Letourneau, Thomas L. McDevitt, Anthony K. Stamper
  • Publication number: 20140106559
    Abstract: A semiconductor fuse device and a method of fabricating the fuse device including a last metal interconnect layer including at least two discrete metal conductors, an inter-level dielectric layer deposited over the last metal interconnect layer and the at least two discrete metal conductors, a thin wire aluminum fuse connecting the at least two discrete metal conductors, and a fuse opening above the aluminum fuse.
    Type: Application
    Filed: December 27, 2013
    Publication date: April 17, 2014
    Applicant: International Business Machines Corporation
    Inventors: Felix P. Anderson, Timothy H. Daubenspeck, Jeffrey P. Gambino, Timothy S. Hayes, Donald R. Letourneau, Thomas L. McDevitt, Anthony K. Stamper
  • Publication number: 20130320488
    Abstract: A semiconductor fuse device and a method of fabricating the fuse device including a last metal interconnect layer including at least two discrete metal conductors, an inter-level dielectric layer deposited over the last metal interconnect layer and the at least two discrete metal conductors, a thin wire aluminum fuse connecting the at least two discrete metal conductors, and a fuse opening above the aluminum fuse.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: International Business Machines Corporation
    Inventors: Felix P. Anderson, Timothy H. Daubenspeck, Jeffrey P. Gambino, Timothy S. Hayes, Donald R. Letourneau, Thomas L. McDevitt, Anthony K. Stamper
  • Publication number: 20120261813
    Abstract: Disclosed is reinforced via farm interconnect structure for an integrated circuit chip that minimizes delamination caused by tensile stresses applied to the chip through lead-free C4 connections during thermal cycling. The reinforced via farm interconnect structure includes a plurality of vias electrically connecting metal wires within different wiring levels and, for reinforcement, further incorporates dielectric columns into the lower metal wire so that the areas around the metal-to-metal interface between the vias and the lower metal wire contain a relatively strong dielectric-to-dielectric interface. The reinforced via farm interconnect structure can be located in an area of the chip at risk for delamination and, for added strength, can have a reduced via density relative to conventional via farm interconnect structures located elsewhere on the chip.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: International Business Machines Corporation
    Inventors: Felix P. Anderson, Timothy H. Daubenspeck, Jeffrey P. Gambino, Donald R. Letourneau, Thomas L. McDevitt