Patents by Inventor Donald W. Kirk

Donald W. Kirk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9919290
    Abstract: A novel carbon absorption material is described which is formed from anaerobic digestate. The material has a hollow tubular structure and is particularly advantageous in converting hydrogen sulfide in biogas and in absorbing the converted sulfur and sulfur compounds from biogas into its structure. The material after use as a hydrogen sulfide absorbent has value as a horticultural or agricultural product or as a sulfur impregnated activated carbon. The process for producing this novel carbon absorption material is described. In an embodiment, the process described uses in particular, a humidified inert gas over a temperature range of between about 500° C. to 900° C. to convert anaerobic digestate to an active carbon absorbent. The thermal treatment is relatively mild and retains the fibrous structure of the source material while removing cellulosic and hemicellulosic components from the anaerobic digestate.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: March 20, 2018
    Assignee: CHAR Technologies Inc.
    Inventors: Donald W. Kirk, John W. Graydon, Andrew J. White
  • Publication number: 20160279599
    Abstract: A novel carbon absorption material is described which is formed from anaerobic digestate. The material has a hollow tubular structure and is particularly advantageous in converting hydrogen sulfide in biogas and in absorbing the converted sulfur and sulfur compounds from biogas into its structure. The material after use as a hydrogen sulfide absorbent has value as a horticultural or agricultural product or as a sulfur impregnated activated carbon. The process for producing this novel carbon absorption material is described. In an embodiment, the process described uses in particular, a humidified inert gas over a temperature range of between about 500° C. to 900° C. to convert anaerobic digestate to an active carbon absorbent. The thermal treatment is relatively mild and retains the fibrous structure of the source material while removing cellulosic and hemicellulosic components from the anaerobic digestate.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Applicant: SulfaCHAR Inc.
    Inventors: Donald W. Kirk, John W. Graydon, Andrew J. White
  • Patent number: 9381493
    Abstract: A novel carbon absorption material is described which is formed from anaerobic digestate. The material has a hollow tubular structure and is particularly advantageous in converting hydrogen sulfide in biogas and in absorbing the converted sulfur and sulfur compounds from biogas into its structure. The material after use as a hydrogen sulfide absorbent has value as a horticultural or agricultural product or as a sulfur impregnated activated carbon. The process for producing this novel carbon absorption material is described. In an embodiment, the process described uses in particular, a humidified inert gas over a temperature range of between about 500° C. to 900° C. to convert anaerobic digestate to an active carbon absorbent. The thermal treatment is relatively mild and retains the fibrous structure of the source material while removing cellulosic and hemicellulosic components from the anaerobic digestate.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: July 5, 2016
    Assignee: SulfaCHAR Inc.
    Inventors: Donald W. Kirk, John W. Graydon, Andrew J. White
  • Publication number: 20130295634
    Abstract: A novel carbon absorption material is described which is formed from anaerobic digestate. The material has a hollow tubular structure and is particularly advantageous in converting hydrogen sulfide in biogas and in absorbing the converted sulfur and sulfur compounds from biogas into its structure. The material after use as a hydrogen sulfide absorbent has value as a horticultural or agricultural product or as a sulfur impregnated activated carbon. The process for producing this novel carbon absorption material is described. In an embodiment, the process described uses in particular, a humidified inert gas over a temperature range of between about 500° C. to 900° C. to convert anaerobic digestate to an active carbon absorbent. The thermal treatment is relatively mild and retains the fibrous structure of the source material while removing cellulosic and hemicellulosic components from the anaerobic digestate.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 7, 2013
    Applicant: DJA TECHNOLOGIES INC.
    Inventors: Donald W. Kirk, John W. Graydon, Andrew J. White
  • Patent number: 8333944
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 18, 2012
    Assignee: Calera Corporation
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Publication number: 20120213688
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 23, 2012
    Inventors: BRENT R. CONSTANTZ, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Publication number: 20110059000
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: November 9, 2010
    Publication date: March 10, 2011
    Inventors: BRENT R. CONSTANTZ, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Patent number: 7887694
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: February 15, 2011
    Assignee: Calera Corporation
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Publication number: 20100224503
    Abstract: A low-energy method and system of forming hydroxide ions in an electrochemical cell. On applying a low voltage across the anode and cathode, hydroxide ions form in the electrolyte containing the cathode, protons form at the anode but a gas e.g. chlorine or oxygen does not form at the anode.
    Type: Application
    Filed: February 1, 2010
    Publication date: September 9, 2010
    Inventors: Donald W. Kirk, J. Douglas Way, Allen J. Bard, Ryan J. Gilliam, Kasra Farsad, Valentin Decker
  • Patent number: 7790012
    Abstract: A low-energy method and system of forming hydroxide ions in an electrochemical cell. On applying a low voltage across the anode and cathode, hydroxide ions form in the electrolyte containing the cathode, protons form at the anode but a gas e.g. chlorine or oxygen does not form at the anode.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: September 7, 2010
    Assignee: Calera Corporation
    Inventors: Donald W. Kirk, J. Douglas Way, Allen J. Bard, Ryan J. Gilliam, Kasra Farsad, Valentin Decker
  • Publication number: 20100155258
    Abstract: A low-energy method and system of forming hydroxide ions in an electrochemical cell. On applying a low voltage across the anode and cathode, hydroxide ions form in the electrolyte containing the cathode, protons form at the anode but a gas e.g. chlorine or oxygen does not form at the anode.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Donald W. Kirk, J. Douglas Way, Allen J. Bard, Ryan J. Gilliam, Kasra Farsad, Valentin Decker
  • Publication number: 20100135865
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: February 2, 2010
    Publication date: June 3, 2010
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, Douglas J. Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Publication number: 20100132556
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: February 2, 2010
    Publication date: June 3, 2010
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Publication number: 20100135882
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: February 2, 2010
    Publication date: June 3, 2010
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Publication number: 20090169452
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: December 24, 2008
    Publication date: July 2, 2009
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard
  • Publication number: 20080098799
    Abstract: A sensor is provided which is able to determine the level of contaminant gas within a gas stream. In particular, the sensor is able to detect the level of hydrogen gas contamination within an oxygen containing gas stream, or the oxygen gas contamination within a hydrogen containing gas stream. The sensor has a first temperature measurement device which measures a first temperature within a catalyst bed which catalyst bed catalytically effects the reaction of hydrogen and oxygen to produce heat. The first temperature is compared to the temperature of the original gas stream measured using a second temperature measurement device. The difference in the first and second temperatures provides a heat signature which can be related to the contaminant gas concentration. A simple, cost effective and reliable contaminant gas sensor is provided.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 1, 2008
    Inventors: Donald W. Kirk, John W. Graydon
  • Patent number: 7261873
    Abstract: A process for obtaining energy values contained in a sulphur-containing carbonaceous fuel, the process comprising (a) treating a feed carbonaceous fuel having a first bound-sulphur content with an effective amount of an oxygen and SO2-containing gas in a reactor at an effective temperature to (i) provide elemental sulphur from the SO2, (ii) release exothermic heat, and (iii) produce a hot effluent gaseous steam containing the elemental sulphur and treated fuel having a second bound-sulphur content, (b) separating the elemental sulphur from the treated fuel; (c) collecting the elemental sulphur; (d) collecting the treated fuel; and (e) collecting the exothermic heat.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: August 28, 2007
    Assignee: Enflow Power Generation Inc.
    Inventors: Charles Q. Jia, Donald W. Kirk
  • Publication number: 20040151953
    Abstract: An electrochemical cell stack comprising stack walls and a plurality of electrolytic cells within the stack walls, each cell comprising cell members selected from an anode a cathode; a membrane separator frame (14) formed of a non-conductive material and having a frame first planar peripheral surface; a frame second planar peripheral surface; and a central portion defining a membrane-receiving aperture (18); a membrane (20) within the aperture to provide an anolyte circulation chamber and a catholyte circulation chamber distinct one from the other within the frame, an impermeable cell end wall (12) formed of a non-conductive material between the anode and cathode and the anodes and cathodes of adjacent cells of said stack; wherein each of said anode, said cathode, said separator frame and said end wall has a portion defining an anolyte flow inlet channel (30), a catholyte flow inlet channel (32), a spent anolyte channel (36) and a spent catholyte channel(34); said anolyte flow inlet channel and said spent ano
    Type: Application
    Filed: January 24, 2004
    Publication date: August 5, 2004
    Inventors: Donald W. Kirk, Steven J Thorpe, John W Graydon
  • Publication number: 20040109820
    Abstract: A process for obtaining energy values contained in a sulphur-containing carbonaceous fuel, the process comprising (a) treating a feed carbonaceous fuel having a first bound-sulphur content with an effective amount of an oxygen and SO2-containing gas in a reactor at an effective temperature to (i) provide elemental sulphur from the SO2, (ii) release exothermic heat, and (iii) produce a hot effluent gaseous steam containing the elemental sulphur and treated fuel having a second bound-sulphur content, (b) separating the elemental sulphur from the treated fuel; (c) collecting the elemental sulphur; (d) collecting the treated fuel; and (e) collecting the exothermic heat.
    Type: Application
    Filed: October 9, 2003
    Publication date: June 10, 2004
    Inventors: Charles Q. Jia, Donald W. Kirk
  • Patent number: 6527923
    Abstract: An electrode of use in electrolytic cells, particularly water electrolyser cells for the production of hydrogen, and comprising an electrically conductive first metal sheet having an electrochemically active gas-evolving planar surface; an electrically conductive second metal electrochemically active gas-evolving screen intimately adjacent and parallel to the planar surface to define an electrolyte and gas-evolving chamber between the sheet and the screen having a narrow width. The electrode provides improvements in voltage and efficiency, longer-term electrode stability and opportunity for periodic depolarization.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: March 4, 2003
    Inventors: Donald W. Kirk, John W Graydon