Patents by Inventor Donald W. Paterson

Donald W. Paterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240080033
    Abstract: Continuous-time (CT) analog-to-digital converters (ADCs) implementing digital correction of digital-to-analog converter (DAC) errors are disclosed. In a CT pipeline stage of a CT ADC, a CT analog input signal is sent to two different paths. A first path (a “feedforward” path) includes a cascade of a sub-ADC and a sub-DAC. A second path (a “forward” path) includes an analog delay circuit to align the delays of the input signal in the feedforward and forward paths. A combiner subtracts the output of the analog delay of the forward path from the output of the sub-DAC in the feedforward path to generate a residue signal. Devices and methods disclosed herein are based on recognition that, if the errors introduced by the sub-DAC are known, they can be corrected in the digital domain during reconstruction, achieving superior NSD and distortion performance compared to conventional approaches.
    Type: Application
    Filed: October 24, 2022
    Publication date: March 7, 2024
    Applicant: Analog Devices International Unlimited Company
    Inventors: Sharvil Pradeep PATIL, Asha GANESAN, Hajime SHIBATA, Donald W. PATERSON, Haiyang ZHU
  • Patent number: 11652491
    Abstract: Mechanisms for reducing or eliminating a quantization error caused by a quantizer of a continuous-time (CT) residue generation system are disclosed. In particular, systems and methods described herein are based on using a dither generation and injection circuit that can perform a high-pass filtering of the additive dither signal (i.e., a high-pass shaped dither signal). Using high-pass shaped dither signals is expected to improve quantizer linearity without significantly reducing the available error correction range. The applied dither may be particularly effective at minimizing signal-dependent distortion in ADC output spectrum caused by the quantizer when the quantization error cancellation accuracy may be insufficient.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: May 16, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Victor Kozlov, Donald W. Paterson, Sharvil Pradeep Patil, Hajime Shibata
  • Publication number: 20220045686
    Abstract: Mechanisms for reducing or eliminating a quantization error caused by a quantizer of a continuous-time (CT) residue generation system are disclosed. In particular, systems and methods described herein are based on using a dither generation and injection circuit that can perform a high-pass filtering of the additive dither signal (i.e., a high-pass shaped dither signal). Using high-pass shaped dither signals is expected to improve quantizer linearity without significantly reducing the available error correction range. The applied dither may be particularly effective at minimizing signal-dependent distortion in ADC output spectrum caused by the quantizer when the quantization error cancellation accuracy may be insufficient.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 10, 2022
    Applicant: Analog Devices International Unlimited Company
    Inventors: Victor KOZLOV, Donald W. PATERSON, Sharvil Pradeep PATIL, Hajime SHIBATA
  • Patent number: 11218158
    Abstract: In one aspect, a transfer function (TF) estimation circuit configured to generate an estimate of a TF undergone by signals between an input of a digital-to-analog converter (DAC) of a feedforward path of a continuous-time (CT) stage of an analog-to-digital converter (ADC) and an output of a backend ADC of the ADC is disclosed. The TF estimation circuit includes one or more circuits configured to generate a first cross-correlation output by cross-correlating digital versions of signals based on a test signal provided to the CT stage and an output signal of the backend ADC, generate a second cross-correlation output by cross-correlating digital versions of signals based on the test signal and an output signal of a quantizer of the feedforward path of the CT stage, and generate the estimate of the TF based on the first and second cross-correlation outputs.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: January 4, 2022
    Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY
    Inventors: Sharvil Pradeep Patil, Donald W. Paterson, Prawal Man Shrestha, Asha Ganesan, Yue Yin, Zhao Li, Victor Kozlov, Hajime Shibata
  • Patent number: 10432210
    Abstract: Continuous-time pipeline analog-to-digital converters can achieve excellent performance, and avoid sampling-related artifacts traditionally associated with discrete-time pipeline ADCs. However, the continuous-time circuitry in the ADCs can pose a challenge for digital signal reconstruction, since the transfer characteristics of the continuous-time circuitry are not as well characterized or as simple as their discrete-time counterparts. To achieve perfect digital signal reconstruction, special techniques are used to implement an effective and efficient digital filter that combines the digital output signals from the stages of the CT ADCs.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: October 1, 2019
    Assignee: ANALOG DEVICES GLOBAL UNLIMITED COMPANY
    Inventors: Shanthi Pavan Yendluri, Donald W. Paterson, Victor Kozlov, Hajime Shibata
  • Patent number: 9768793
    Abstract: For continuous-time multi-stage noise shaping analog-to-digital converters (CT MASH ADCs), quantization noise cancellation often requires accurate estimation of transfer functions, e.g., a noise transfer function of the front end modulator and a signal transfer function of the back end modulator. To provide quantization noise cancellation, digital quantization noise cancellation filters adaptively tracks transfer function variations due to integrator gain errors, flash-to-DAC timing errors, as well as the inter-stage gain and timing errors. Tracking the transfer functions is performed through the direct cross-correlation between the injected maximum length linear feedback shift registers (LFSR) sequence and modulator outputs and then corrects these non-ideal effects by accurately modeling the transfer functions with programmable finite impulse response (PFIR) filters.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 19, 2017
    Assignee: ANALOG DEVICES GLOBAL
    Inventors: Qingdong Meng, Hajime Shibata, Richard E. Schreier, Martin Steven McCormick, Yunzhi Dong, Jose Barreiro Silva, Jialin Zhao, Donald W. Paterson, Wenhua W. Yang
  • Patent number: 9742426
    Abstract: Typically, complex systems require a separate and expensive equalizer at the output of an analog-to-digital converter (ADC). Rather than providing a separate equalizer, the effective Signal Transfer Function (STF) of a Multi-stAge noise SHaping (MASH) ADC can be modified by leveraging available digital filtering hardware necessary for quantization noise cancellation. The modification can involves adding calculations in the software previously provided for computing digital quantization noise cancellation filter coefficients, where the calculations are added to take into account equalization as well. As a result, the signal transfer function can be modified to meet ADC or system-level signal-chain specifications without additional equalization hardware. The method is especially attractive for high-speed applications where magnitude and phase responses are more challenging to meet.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: August 22, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventors: Jose Barreiro Silva, Donald W. Paterson
  • Publication number: 20170179969
    Abstract: For continuous-time multi-stage noise shaping analog-to-digital converters (CT MASH ADCs), quantization noise cancellation often requires accurate estimation of transfer functions, e.g., a noise transfer function of the front end modulator and a signal transfer function of the back end modulator. To provide quantization noise cancellation, digital quantization noise cancellation filters adaptively tracks transfer function variations due to integrator gain errors, flash-to-DAC timing errors, as well as the inter-stage gain and timing errors. Tracking the transfer functions is performed through the direct cross-correlation between the injected maximum length linear feedback shift registers (LFSR) sequence and modulator outputs and then corrects these non-ideal effects by accurately modeling the transfer functions with programmable finite impulse response (PFIR) filters.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 22, 2017
    Applicant: ANALOG DEVICES GLOBAL
    Inventors: Qingdong Meng, Hajime Shibata, Richard E. Schreier, Martin Steven McCormick, Yunzhi Dong, Jose Barreiro Silva, Jialin Zhao, Donald W. Paterson, Wenhua W. Yang
  • Publication number: 20170170841
    Abstract: Typically, complex systems require a separate and expensive equalizer at the output of an analog-to-digital converter (ADC). Rather than providing a separate equalizer, the effective Signal Transfer Function (STF) of a Multi-stAge noise SHaping (MASH) ADC can be modified by leveraging available digital filtering hardware necessary for quantization noise cancellation. The modification can involves adding calculations in the software previously provided for computing digital quantization noise cancellation filter coefficients, where the calculations are added to take into account equalization as well. As a result, the signal transfer function can be modified to meet ADC or system-level signal-chain specifications without additional equalization hardware. The method is especially attractive for high-speed applications where magnitude and phase responses are more challenging to meet.
    Type: Application
    Filed: November 22, 2016
    Publication date: June 15, 2017
    Applicant: ANALOG DEVICES, INC.
    Inventors: JOSE BARREIRO SILVA, Donald W. Paterson
  • Patent number: 9209827
    Abstract: An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by decimalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: December 8, 2015
    Assignee: Analog Devices Global
    Inventors: Kevin Cao-Van Lam, Richard E. Schreier, Donald W. Paterson
  • Publication number: 20150188562
    Abstract: An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by decimalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Applicant: ANALOG DEVICES GLOBAL
    Inventors: Kevin Cao-Van Lam, Richard E. Schreier, Donald W. Paterson
  • Patent number: 9030342
    Abstract: An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by denormalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: May 12, 2015
    Assignee: Analog Devices Global
    Inventors: Kevin Cao-Van Lam, Richard E. Schreier, Donald W. Paterson
  • Publication number: 20150022386
    Abstract: An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by denormalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Applicant: ANALOG DEVICES TECHNOLOGY
    Inventors: Kevin Cao-Van Lam, Richard E. Schreier, Donald W. Paterson
  • Patent number: 5116325
    Abstract: A needle assembly 10 comprises a needle device 11 having a needle base 14 and a hollow needle 12, having a free end 13 which is sharpened or pointed, protruding from the base, with a passageway 15 extending along the needle. An opening 17 to the passageway is provided in proximity to the sharpened end or point of the needle. A needle guard comprising an elongate protective sheath 20 provided around the needle base and the needle such that the sharpened end of the needle is protected by the sheath. An elongate opening 24 extends along the sheath and the needle can pass through it. First hinge components 30 are located on the sheath. Second hinge components 16 are provided on the base. The first and second hinge components co-operate with each other such that the needle guard is pivotal from a primary position in which the sharpened needle end or point is protected by the sheath, to a secondary position in which the needle point is exposed for use.
    Type: Grant
    Filed: May 31, 1991
    Date of Patent: May 26, 1992
    Inventor: Donald W. Paterson