Patents by Inventor Donald W. Rule

Donald W. Rule has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8519382
    Abstract: A photocapacitor device is provided for responding to a photon having at least a specified energy. The photocapacitive device includes a first portion composed of a photocapacitive material; a second portion composed of a non-photocapacitive material; and a depletion region disposed between the first and second portions. The photocapacitive and non-photocapacitive materials respectively have first and second Fermi-energy differences, with the second Fermi-energy difference being higher than the first Fermi-energy difference.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 27, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Kevin A. Boulais, Donald W. Rule, Karen J. Long, Francisco Santiago, Pearl Rayms-Keller, Victor H. Gehman, Jr.
  • Publication number: 20120313080
    Abstract: A photocapacitor device is provided for responding to a photon having at least a specified energy. The photocapacitive device includes a first portion composed of a photocapacitive material; a second portion composed of a non-photocapacitive material; and a depletion region disposed between the first and second portions. The ph otocapacitive and non-photocapacitive materials respectively have first and second Fermi-energy differences, with the second Fermi-energy difference being higher than the first Fermi-energy difference.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 13, 2012
    Applicant: United States Government, as represented by the Secretary of the Navy
    Inventors: Kevin A. Boulais, Donald W. Rule, Karen J. Long, Francisco Santiago, Alfredo N. Rayms-Keller, Victor H. Gehman, JR.
  • Patent number: 7864394
    Abstract: A dynamically variable lens is made from actively tunable electromagnetic metamaterial cells. The lens operates on electromagnetic radiation including: radio frequency waves, microwaves, teraherz waves, near infrared waves, infrared waves and visible waves. The focal length of the lens is changed at a selected frequency. In the alternative, the frequency of radiation operated on is changed as a function of time. A third alternative provides precise control of the index of refraction of the lens. The index of refraction is varied progressively across the lens from one edge to the opposite edge causing the radiation to be directed at an angle.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: January 4, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Donald W. Rule, Kevin A. Boulais, Francisco Santiago
  • Patent number: 7525711
    Abstract: In one general aspect, a tunable electromagnetic metamaterial as described herein includes a substrate and an array of split ring resonators formed on the substrate. At least one of the split ring resonators is a capacitively tuned split ring resonator. The capacitively tuned split ring resonator includes a structure having a gap and is formed of an electrically conductive material. The capacitively tuned split ring resonator also includes a region of photo-capacitive material formed in close proximity to the structure such that the capacitance of the metamaterial is changed when illuminated by controlling electromagnetic radiation having a selected range of wavelengths.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: April 28, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Donald W. Rule, Kevin A. Boulais, Francisco Santiago
  • Patent number: 5661304
    Abstract: A method and apparatus for detecting diffraction radiation from a charged particle beam in order to measure parameters that characterize the charged particle beam. The charged particle beam passes near one or more edges, apertures, or interfaces between media of different dielectric constants such that the beam is not intercepted. This generates forward diffraction radiation and reflected diffraction radiation at an angle relative to the direction of the beam. The radiation passes through a focusing system and onto a detector which measures a desired parameter.
    Type: Grant
    Filed: May 6, 1996
    Date of Patent: August 26, 1997
    Assignee: STI Optronics, Inc.
    Inventors: Wayne D. Kimura, Ralph B. Fiorito, Donald W. Rule
  • Patent number: 5120968
    Abstract: The invention is a device to measure the emittance of a charged particle beam. The device is capable of providing precise time resolution limited only by the chosen detector. The device allows a complete emittance determination as a function of time. The preferred embodiment of the invention comprises a plurality of thin foils 11 which generate an optical transistion radiation (OTR) pattern 13; a lens system 14 to collect the OTR pattern 13 from the said foils 11: an optical mask 16 to allow passage of the OTR pattern 13 :and a detector array 17 or similar device placed behind the mask 16 which intercepts, senses and measures the point source OTR pattern 13 for each perforation in the mask.
    Type: Grant
    Filed: July 5, 1990
    Date of Patent: June 9, 1992
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ralph B. Fiorito, Donald W. Rule
  • Patent number: 5045695
    Abstract: A transition radiation interference spectrometer for measuring the energy and divergence of a charged particle beam. Transition radiation is created by placing an interferometer in the path of the charged particle beam. The resulting interference pattern is focused and masked to define an angular element at a fixed angle with respect to the direction of specular reflection. The radiation in the angular element is dispersed into wavelength components. The intensity or amplitude of the wavelength components as a function of wavelength is indicative of the beam's energy and divergence.
    Type: Grant
    Filed: June 4, 1990
    Date of Patent: September 3, 1991
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Donald W. Rule, Ralph B. Fiorito