Patents by Inventor Dong-Hyun Ko

Dong-Hyun Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210362111
    Abstract: The present specification relates to a method comprising: (A) mixing a ferrite-based catalyst molded article with diluent material particles; and (B) adding the mixture to a catalyst reactor, and a method for preparing butadiene using the same.
    Type: Application
    Filed: January 29, 2019
    Publication date: November 25, 2021
    Inventors: Ye Seul HWANG, Daeheung CHOI, Myungji SUH, Sunhwan HWANG, Dong Hyun KO, Kyong Yong CHA, Jun Kyu HAN
  • Patent number: 11167271
    Abstract: The method for preparing a ferrite-based coating catalyst including mixing a support, a ferrite-based catalyst, and water in a coating machine which is a rotating body, in which a weight ratio of the water based on a total weight of the support is 0.15 to 0.3.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: November 9, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Joohyuck Lee, Dong Hyun Ko, Kyong Yong Cha, Myungji Suh
  • Patent number: 11117119
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation having a porous structure which may easily control heat generation due to high-temperature and high-pressure reaction conditions and side reaction due to the porous structure and thus exhibits superior product selectivity, and a method of preparing the catalyst.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 14, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Yoon Jae Min, Dong Hyun Ko, Kyong Yong Cha, Se Won Baek, Jun Kyu Han
  • Publication number: 20210238111
    Abstract: An exemplary embodiment of the present application provides a method for preparing butadiene, the method comprising a process of performing an oxidative dehydrogenation reaction by introducing a reactant comprising butene, oxygen, nitrogen, and steam into a reactor which is filled with a catalyst, in which during a first start-up of the oxidative dehydrogenation reaction, the oxygen is introduced into the reactor before the butene, or the oxygen is introduced into the reactor simultaneously with the butene.
    Type: Application
    Filed: July 10, 2019
    Publication date: August 5, 2021
    Inventors: Myungji SUH, Jun Han KANG, Kyong Yong CHA, Dong Hyun KO
  • Publication number: 20210187485
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1: X wt %+Y wt %=100 wt %,??<Equation 1> wherein X is a content of AB2O4 and is 5 or more and less than 30, and Y is a content of the porous support and is more than 70 and 95 or less, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 24, 2021
    Inventors: Myung Ji SUH, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Ye Seul HWANG, Jun Kyu HAN, Sun Hwan HWANG
  • Patent number: 11040335
    Abstract: Provided is a method for producing a zinc ferrite catalyst, the method comprising: preparing a zinc precursor solution; preparing a ferrite precursor solution; obtaining a first precipitate by bringing the zinc precursor solution into contact with an alkaline solution; obtaining a second precipitate by adding the ferrite precursor solution to the first precipitate; and drying and firing the second precipitate after filtering the second precipitate.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 22, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Jun Kyu Han, Dong Hyun Ko, Kyong Yong Cha, Sang Jin Han, Sunhwan Hwang, Seongmin Kim
  • Publication number: 20210163378
    Abstract: The present specification provides a method for preparing 1,3-butadiene, the method comprising: (A) obtaining a first product comprising a light component, 1,3-butadiene, and a heavy component from a reactant comprising butene; (B) separating the heavy component from a second product comprising the 1,3-butadiene and the light component by condensing the heavy component after heat exchanging the first product; and (C) separating concentrated heavy component by reboiling the condensed heavy component.
    Type: Application
    Filed: February 1, 2019
    Publication date: June 3, 2021
    Inventors: Hyunseok NAM, Jun Han KANG, Kyong Yong CHA, Jaewon JEONG, Dong Hyun KO, Jun Kyu HAN, Sang Jin HAN, Kyung Moo LEE, Joohyuck LEE, Daeheung CHOI, Myungji SUH, Ye Seul HWANG, Sunhwan HWANG, Seongmin KIM
  • Patent number: 11008274
    Abstract: A method for preparing dimethylolbutanal including performing an aldol reaction of n-butyraldehyde (n-BAL) and paraformaldehyde (PFA) in the presence of water and an alkylamine catalyst, in which a weight ratio of the paraformaldehyde:water is 1:0.35 to 1:0.85.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: May 18, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Min Ji Choi, Sungshik Eom, Dawon Jung, Tae Yun Kim, Dong Hyun Ko, Mi Young Kim
  • Publication number: 20210129124
    Abstract: A hydroformylation catalyst having excellent catalytic activity and stability, a composition including the hydroformylation catalyst, and a method of preparing an aldehyde using the hydroformylation catalyst, wherein, when hydroformylation of an olefin compound is performed in the presence of the hydroformylation catalyst to prepare an aldehyde, the normal/iso (n/i) ratio of the prepared aldehyde is lowered, and synthesis gas yield is increased.
    Type: Application
    Filed: January 5, 2021
    Publication date: May 6, 2021
    Inventors: Mi Young Kim, Sung Shik Eom, Dong Hyun Ko, Da Won Jung, Tae Yun Kim, Min Ji Choi
  • Patent number: 10994265
    Abstract: Provided is a catalyst system for oxidative dehydrogenation, a reactor for preparing butadiene including the catalyst system, and a method of preparing 1,3-butadiene. In the catalyst system for oxidative dehydrogenation, a coating catalyst is diluted with a specific dilution filler and a reactor is filled with the diluted catalyst, or a reactor is filled with a catalyst for oxidative dehydrogenation so that the concentration of an active ingredient included in the catalyst gradually increases in the direction from reactants inlet in which reactants are fed into the reactor to products outlet. The catalyst system for oxidative dehydrogenation can efficiently control heat generated inside a reactor, thereby improving conversion rate, selectivity, yield, and long-term stability of a catalyst.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: May 4, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Myungji Suh, Dong Hyun Ko, Kyong Yong Cha
  • Patent number: 10994262
    Abstract: Disclosed are a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, a catalyst for oxidative dehydrogenation of butene having a high butene conversion rate and superior side reaction inhibition effect and thus having high reactivity and high selectivity for a product by preparing metal oxide nanoparticles and then fixing the prepared metal oxide nanoparticles to a support, and a method of preparing the same are provided.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 4, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Seongmin Kim, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Jun Kyu Han, Sun Hwan Hwang, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Ye Seul Hwang, Sang Jin Han
  • Publication number: 20210114001
    Abstract: The method for preparing a ferrite-based coating catalyst including mixing a support, a ferrite-based catalyst, a cellulose-based additive, and water, in which a content of the cellulose-based additive is 0.5 wt % or less based on a total weight of the ferrite-based catalyst.
    Type: Application
    Filed: February 26, 2019
    Publication date: April 22, 2021
    Inventors: Joohyuck LEE, Dong Hyun KO, Kyong Yong CHA, Myungji SUH
  • Publication number: 20210107873
    Abstract: A preparation method according to the present invention makes it possible to industrially produce large amounts of highly pure optically active tert-butyl 3-methyl-4-oxopiperidine-1-carboxylate in high yield by use of commercially available reagents and solvents. In addition, the use of novel intermediates according to the present invention makes it possible to produce highly pure optically active tert-butyl 3-methyl-4-oxopiperidine-1-carboxylate in high yield.
    Type: Application
    Filed: December 7, 2018
    Publication date: April 15, 2021
    Inventors: Jae Hong Kweon, Eun Sun Kim, Hyuk Woo Lee, Dong Hyun Ko, Chae Young Ryu, Kwang Do Choi, SeungPyeong Heo
  • Patent number: 10947174
    Abstract: A method for preparing trimethylolpropane, the method including: subjecting dimethylolbutanal (DMB) to a hydrogenation reaction in the presence of a metal catalyst and an alcohol solvent. During the hydrogenation reaction, a weight ratio of the alcohol solvent based to dimethylolbutanal is 2 to 10.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: March 16, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Dawon Jung, Sungshik Eom, Tae Yun Kim, Dong Hyun Ko, Mi Young Kim, Min Ji Choi, Taewoo Kim
  • Patent number: 10946364
    Abstract: Provided is a catalyst system for oxidative dehydrogenation, a reactor for oxidative dehydrogenation including the catalyst system, and a method of performing oxidative dehydrogenation using the reactor. In the catalyst system, a fixed-bed reactor is filled with a catalyst for oxidative dehydrogenation in an n-stage structure (n being an integer of 2 or more), wherein each stage of the n-stage structure satisfies Equations 1 and 2 as claimed so that the concentration of an active ingredient included in the catalyst gradually increases in the direction in which reactants are fed into the reactor. Heat generated inside the reactor may be effectively controlled during oxidative dehydrogenation, thereby improving conversion rate, selectivity, and yield. In addition, catalyst deterioration may be reduced, thereby improving long-term stability of the catalyst.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: March 16, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Myungji Suh, Dong Hyun Ko, Jun Han Kang, Hyunseok Nam, Sang Jin Han, Seongmin Kim
  • Publication number: 20210060537
    Abstract: Provided is a catalyst for an oxidative dehydrogenation reaction that comprises: a porous support; a core portion supported on the porous support and containing a first zinc ferrite-based catalyst; and a shell portion supported on the core portion and containing a second zinc ferrite-based catalyst, in which the first zinc ferrite-based catalyst and the second zinc ferrite-based catalyst are different from each other.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 4, 2021
    Inventors: Ye Seul HWANG, Dong Hyun KO, Joohyuck LEE, Myungji SUH
  • Patent number: 10926246
    Abstract: The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention provides a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an ?-iron oxide content in a catalyst in a predetermined range.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: February 23, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Jun Kyu Han, Dong Hyun Ko, Kyong Yong Cha, Myung Ji Suh, Sun Hwan Hwang, Seong Min Kim
  • Publication number: 20210046469
    Abstract: A method for preparing a metal complex catalyst by (A) obtaining a precipitate by bringing a metal precursor solution comprising a zinc (Zn) precursor, a ferrite (Fe) precursor, and water into contact with a basic aqueous solution; (B) obtaining a zinc ferrite catalyst by filtering and calcining the precipitate; and (C) supporting an acid onto the zinc ferrite catalyst, and a metal complex catalyst prepared thereby.
    Type: Application
    Filed: April 10, 2019
    Publication date: February 18, 2021
    Inventors: Sunhwan HWANG, Kyong Yong CHA, Dong Hyun KO, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN, Seongmin KIM
  • Publication number: 20210039079
    Abstract: The present invention relates to a catalyst composition for hydroformylation and a method of preparing an aldehyde using the same. More specifically, the present invention provides a catalyst composition for hydroformylation including a specific phosphite-based ligand and a transition metal compound in a specific amount range, thereby being capable of greatly lowering a use amount of an expensive transition metal compound and exhibiting excellent catalyst activity or stability. In addition, by using the catalyst composition in hydroformylation, excellent reaction efficiency may be provided and iso-aldehyde may be generated in high yield.
    Type: Application
    Filed: February 2, 2018
    Publication date: February 11, 2021
    Inventors: Tae Yun KIM, Min Ji CHOI, Sung Shik EOM, Mi Young KIM, Dong Hyun KO, Da Won JUNG
  • Publication number: 20210039075
    Abstract: The method for preparing a ferrite-based coating catalyst including mixing a support, a ferrite-based catalyst, and water in a coating machine which is a rotating body, in which a weight ratio of the water based on a total weight of the support is 0.15 to 0.3.
    Type: Application
    Filed: February 26, 2019
    Publication date: February 11, 2021
    Inventors: Joohyuck LEE, Dong Hyun KO, Kyong Yong CHA, Myungji SUH