Patents by Inventor Dong Woo Gim

Dong Woo Gim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8537204
    Abstract: Television broadcasting systems of this invention comprise an imaging system, and transmission system, and a displaying system. The imaging system captures two-dimensional images of an object at different focal plane, and generates an all-in-focused image and depth profile. A data signal carrying the image data is generated and transmitted over a broadcasting system compatible with commercial two-dimensional television broadcasting, cable, and/or alternative systems. The depth profile is transmitted by using vacant space in video/audio signal within the allocated channel bandwidth. The data signal is received by the displaying system and the extracts the all-in-focused image and depth information from the data signal. The object is restored from all-in-focused image and depth profile and displayed on the displaying system as a three-dimensional spatial image. Viewers having conventional two-dimensional display device can watch enhanced two-dimensional images.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: September 17, 2013
    Inventors: Gyoung Il Cho, Tae Hyeon Kim, Dong Woo Gim, Cheong Soo Seo
  • Patent number: 7605964
    Abstract: The present invention discloses an array of micromirrors with non-fixed underlying structures which can be oriented to have principal rotational axis with no structural and mechanical interference and with no electrical conflict. The micromirror array in the present invention can reproduce various surfaces including spherical, aspherical (e.g. parabolic, hyperbolic, elliptical, etc.), anamorphic, other than rotational symmetric profiles. With the newly introduced non-fixed underlying structure, the present invention makes possible for a micromirror array to generate a desired optical surface profile by simple motion controls and to improve structural stability, simplicity, flexibility, and efficiency in motion and motion control.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: October 20, 2009
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Dong Woo Gim, Jin Young Sohn, Gyoung Il Cho, Cheong Soo Seo
  • Patent number: 7535618
    Abstract: A discretely controlled micromirror device provides multiple motions of a micromirror using stepper plate and micromirror bottom support. The discretely controlled micromirror device can be controlled in a low driving voltage. Also, simple motion control is applied by digital controlling and only single voltage is needed for driving the micromirror motion.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: May 19, 2009
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Hye Young Kim, Dong Woo Gim, Jin Young Sohn, Gyoung Il Cho, Cheong Soo Seo
  • Patent number: 7488082
    Abstract: This invention provides a discretely controlled micromirror array device comprising a plurality of micromirrors. The discretely controlled micromirror array device forms multiple surface profiles, wherein the rotational and translational motion of each micromirror is discretely controlled by selectively activating different groups of segmented electrodes using a control circuitry. The discretely controlled micromirror array device is compatible with known semiconductor electronics technologies and provides structural stability and efficiency in motion.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: February 10, 2009
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Hye Young Kim, Dong Woo Gim, Jin Young Sohn, Gyoung Il Cho, Cheong Soo Seo
  • Publication number: 20080239442
    Abstract: The present invention discloses an array of micromirrors with non-fixed underlying structures which can be oriented to have principal rotational axis with no structural and mechanical interference and with no electrical conflict. The micromirror array in the present invention can reproduce various surfaces including spherical, aspherical (e.g. parabolic, hyperbolic, elliptical, etc.), anamorphic, other than rotational symmetric profiles. With the newly introduced non-fixed underlying structure, the present invention makes possible for a micromirror array to generate a desired optical surface profile by simple motion controls and to improve structural stability, simplicity, flexibility, and efficiency in motion and motion control.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicants: STEREO DISPLAY, INC., ANGSTROM, INC.
    Inventors: Dong Woo Gim, Jin Young Sohn, Gyoung Il Cho, Cheong Soo Seo
  • Publication number: 20080225369
    Abstract: A discretely controlled micromirror device provides multiple motions of a micromirror using stepper plate and micromirror bottom support. The discretely controlled micromirror device can be controlled in a low driving voltage. Also, simple motion control is applied by digital controlling and only single voltage is needed for driving the micromirror motion.
    Type: Application
    Filed: March 12, 2007
    Publication date: September 18, 2008
    Applicants: STEREO DISPLAY, INC., ANGSTROM, INC.
    Inventors: Hye Young Kim, Dong Woo Gim, Jin Young Sohn, Gyoung Il Cho, Cheong Soo Seo
  • Patent number: 7411718
    Abstract: A discretely controlled micromirror array lens (DCMAL) consists of many discretely controlled micromirrors (DCMs) and actuating components. The actuating components control the positions of DCMs electrostatically. The optical efficiency of the DCMAL is increased by locating a mechanical structure upholding DCMs and the actuating components under DCMs to increase an effective reflective area. The known microelectronics technologies can remove the loss in effective reflective area due to electrode pads and wires. The lens can correct aberrations by controlling DCMs independently. Independent control of each DCM is possible by known microelectronics technologies. The DCM array can also form a lens with arbitrary shape and/or size, or a lens array comprising the lenses with arbitrary shape and/or size.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: August 12, 2008
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Gyoung Il Cho, Dong Woo Gim, Tae Hyeon Kim, Cheong Soo Seo
  • Patent number: 7400437
    Abstract: This invention provides the two types of Discretely Controlled Micromirror (DCM), which can overcome disadvantages of the conventional electrostatic micromirrors. The first type micromirror is a Variable Supporter Discretely Controlled Micromirror (VSDCM), which has a larger displacement range than the conventional electrostatic micromirror. The displacement accuracy of the VSDCM is better than that of the conventional electrostatic micromirror and the low driving voltage is compatible with IC components. The second type of DCM, the Segmented Electrode Discretely Controlled Micromirror (SEDCM) has same disadvantages with the conventional electrostatic micromirror. But the SEDCM is compatible with known microelectronics technologies.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: July 15, 2008
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Gyoung Il Cho, Dong Woo Gim, Cheong Soo Seo
  • Publication number: 20080137173
    Abstract: This invention provides a discretely controlled micromirror array device comprising a plurality of micromirrors. The discretely controlled micromirror array device forms multiple surface profiles, wherein the rotational and translational motion of each micromirror is discretely controlled by selectively activating different groups of segmented electrodes using a control circuitry. The discretely controlled micromirror array device is compatible with known semiconductor electronics technologies and provides structural stability and efficiency in motion.
    Type: Application
    Filed: December 12, 2006
    Publication date: June 12, 2008
    Applicants: STEREO DISPLAY, INC., ANGSTROM, INC.
    Inventors: Hye Young Kim, Dong Woo Gim, Jin Young Sohn, Gyoung Il Cho, Cheong Soo Seo
  • Patent number: 7382516
    Abstract: This invention provides the two types of Discretely Controlled Micromirror (DCM), which can overcome disadvantages of the conventional electrostatic micromirrors. The first type micromirror is a Variable Supports Discretely Controlled Micromirror (VSDCM), which has a larger displacement range than the conventional electrostatic micromirror. The displacement accuracy of the VSDCM is better than that of the conventional electrostatic micromirror and the low driving voltage is compatible with IC components. The second type of DCM, the Segmented Electrode Discretely Controlled Micromirror (SEDCM) has same disadvantages with the conventional electrostatic micromirror. But the SEDCM is compatible with known microelectronics technologies.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: June 3, 2008
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Cheong Soo Seo, Dong Woo Gim, Gyoung Il Cho, Tae Hyeon Kim
  • Patent number: 7365899
    Abstract: The present invention discloses a micromirror device with multi-axis rotational and translational motion. Newly introduced structure of the top electrode plate improves structural stability, flexibility, and more motion efficiency of the micromirror device. The invention also improves controllability of micromirror motion by designing the appropriate flexible structure to generate desired motion. With side-by-side arrangement of the micromirror devices, the micromirror devices are built as an array to form a micromirror array lens.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: April 29, 2008
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Dong Woo Gim, Gyoung Il Cho, Jin Young Sohn, Cheong Soo Seo
  • Publication number: 20080037102
    Abstract: The present invention discloses a micromirror device with multi-axis rotational and translational motion. Newly introduced structure of the top electrode plate improves structural stability, flexibility, and more motion efficiency of the micromirror device. The invention also improves controllability of micromirror motion by designing the appropriate flexible structure to generate desired motion. With side-by-side arrangement of the micromirror devices, the micromirror devices are built as an array to form a micromirror array lens.
    Type: Application
    Filed: August 10, 2006
    Publication date: February 14, 2008
    Applicants: STEREO DISPLAY, INC., ANGSTROM, INC.
    Inventors: DONG WOO GIM, GYOUNG IL CHO, JIN YOUNG SOHN, CHEONG SOO SEO
  • Patent number: 7239438
    Abstract: A discretely controlled micromirror array lens (DCMAL) consists of many discretely controlled micromirrors (DCMs) and actuating components. The actuating components control the positions of DCMs electrostatically. The optical efficiency of the DCMAL is increased by locating a mechanical structure upholding DCMs and the actuating components under DCMs to increase an effective reflective area. The known microelectronics technologies can remove the loss in effective reflective area due to electrode pads and wires. The lens can correct aberrations by controlling DCMs independently. Independent control of each DCM is possible by known microelectronics technologies. The DCM array can also form a lens with arbitrary shape and/or size, or a lens array comprising the lenses with arbitrary shape and/or size.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: July 3, 2007
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Gyoung Il Cho, Cheong Soo Seo, Tae Hyeon Kim, Dong Woo Gim
  • Patent number: 7215882
    Abstract: An automatic focusing system comprises at least one micromirror array lens, an image sensor, and a signal processor. The micromirror array lens images an object and focuses the image on the image sensor. The image sensor receives the light and converts the photo energy of the light to electrical energy in the form of an electrical signal. The image sensor sends the electrical signal, which carries image data concerning the object, to the signal processor. The signal processor receives the electrical signal, compares the image quality of the image data to its focus criteria, and generates a control signal, which it sends to the micromirror array lens to adjust the focal length of the micromirror array lens. This iterative process is continued until the quality of the image data meets the focus criteria, and the process is completed within the afterimage speed of the human eye.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: May 8, 2007
    Assignees: Angatrom, Inc., Stereo Display, Inc.
    Inventors: Gyoung Il Cho, Tae Hyeon Kim, Dong Woo Gim, Cheong Soo Seo
  • Patent number: 7173653
    Abstract: A vibration correction device in an imaging device includes a micromirror array lens, configured to focus an object image onto an image sensor, and a vibration determination device, communicatively coupled to the micromirror array lens, configured to determine vibration of the imaging device and to generate a vibration correction signal. The micromirror array lens is adjusted to change its optical axis based at least in part on the vibration correction signal to correct for the vibration of the micromirror array lens. In one aspect, the micromirror array lens includes a plurality of micromirrors and the optical axis is changed by translation and/or rotation of the plurality of micromirrors. The advantages of the present invention include elimination of need for mechanical macromotions to adjust the optical axis, high sampling rate, simple structure, and flexibility to use any type of vibration determination device.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: February 6, 2007
    Assignees: Angstrom, Inc., Stereo Display, Inc.
    Inventors: Dong Woo Gim, Gyoung Il Cho, Cheong Soo Seo
  • Patent number: 7077523
    Abstract: A three-dimensional display device includes a two-dimensional display displaying a first image, and a variable focusing lens receiving light from the two-dimensional display and forming a second image. The variable focusing lens reflects light from the two-dimensional display. The first image includes a predetermined number of first depthwise images that are displayed within a unit time, and the second image includes corresponding second depthwise images. Each depthwise image represents the portion of the first image having the same image depth, and the two-dimensional display displays one depthwise image at a time. The focal length of the variable focusing lens changes according to the depth of the depthwise image being displayed. A micromirror array lens is used as the variable focusing lens. The micromirror array lens has enough speed and focusing depth range for realistic three-dimensional display.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: July 18, 2006
    Assignees: Angstorm Inc., Stereo Display Inc.
    Inventors: Cheong Soo Seo, Dong Woo Gim, Gyoung Il Cho, James Greenup Boyd, Sang Hyune Baek
  • Patent number: 7068416
    Abstract: A new three-dimensional imaging device has been needed to overcome the problems of the prior arts that the used variable focal length lenses that are still slow, have small focal length variation and low focusing efficiency, and requires a complex mechanism to control it. The invented three-dimensional imaging system uses the variable focal length micromirror array lens. Since the micromirror array lens has lots of advantages such as very fast response time, large focal length variation, high optical focusing efficiency, large size aperture, low cost, simple mechanism, and so on, the three-dimensional imaging device can get a real-time three-dimensional image with large depth range and high depth resolution.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: June 27, 2006
    Assignees: Angstrom Inc., Stereo Display Inc.
    Inventors: Dong Woo Gim, Cheong Soo Seo, Gyoung Il Cho, Tae Hyeon Kim
  • Patent number: 7057826
    Abstract: There is a need for a small and fast optical zoom device that can change magnification. Conventional zoom devices require coupled mechanical motions to adjust the axial separations between individual or groups of elements in order to change the optical magnification. The mechanical motions decrease the speed of zooming, increase space and weight for zoom system, may induce unwanted jitter, and require large power consumption. In addition, the mechanical zoom system is restricted to magnifying the area on-axis. To solve problems of conventional zoom system, the zoom system utilizing one or more variable focal length micromirror array lenses without macroscopic mechanical motion of lenses is invented.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: June 6, 2006
    Assignees: Angstrom Inc., Stereo Display Inc.
    Inventors: Gyoung Il Cho, Dong Woo Gim, Cheong Soo Seo, James Greenup Boyd, Sang Hyune Baek