Patents by Inventor Dong-YI Wu

Dong-YI Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240099154
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Patent number: 11839490
    Abstract: An apparatus is disclosed for determining validity of a measured in-blood percentage of oxygenated hemoglobin. The apparatus has multiple pulse oximetry channels having at least three light sources of at least three distinct wavelengths, which are detected and converted to digital signals. The light sources are selectively activated, and two or more estimated in-blood percentages of oxygenated hemoglobin are calculated. It is determined whether a signal quality associated with the calculated in-blood percentages exceeds a predetermined accuracy threshold, and an associated validity indication is provided.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: December 12, 2023
    Assignee: Garmin International, Inc.
    Inventors: Cheng-Yu Tsai, Dong-Yi Wu, Wei-Che Chang
  • Publication number: 20220142569
    Abstract: An apparatus is disclosed for determining validity of a measured in-blood percentage of oxygenated hemoglobin. The apparatus has multiple pulse oximetry channels having at least three light sources of at least three distinct wavelengths, which are detected and converted to digital signals. The light sources are selectively activated, and two or more estimated in-blood percentages of oxygenated hemoglobin are calculated. It is determined whether a signal quality associated with the calculated in-blood percentages exceeds a predetermined accuracy threshold, and an associated validity indication is provided.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 12, 2022
    Inventors: Cheng-Yu Tsai, Dong-Yi Wu, Wei-Che Chang
  • Patent number: 10820814
    Abstract: An electronic fitness device comprises an optical transmitter, a first lens, an optical receiver, and a second lens. The optical transmitter is operable to transmit an optical signal. The first lens covers at least a portion of the optical transmitter and is operable to direct the optical signal into the skin of a user in a first direction outward from a center of the electronic fitness device. The optical receiver is operable to receive optical signals modulated by the skin of the user and to generate a photoplethysmogram (PPG) signal resulting from the optical signal. The second lens covers at least a portion of the optical receiver and is operable to receive a modulated optical signal from the skin of the user in a second direction inward toward the center of the electronic fitness device and to direct the modulated optical signal toward the optical receiver.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: November 3, 2020
    Assignee: Garmin Switzerland GmbH
    Inventors: Cheng-Yu Tsai, Dong-Yi Wu, Brandon J. Guttersohn
  • Publication number: 20190269341
    Abstract: An electronic fitness device comprises an optical transmitter, a first lens, an optical receiver, and a second lens. The optical transmitter is operable to transmit an optical signal. The first lens covers at least a portion of the optical transmitter and is operable to direct the optical signal into the skin of a user in a first direction outward from a center of the electronic fitness device. The optical receiver is operable to receive optical signals modulated by the skin of the user and to generate a photoplethysmogram (PPG) signal resulting from the optical signal. The second lens covers at least a portion of the optical receiver and is operable to receive a modulated optical signal from the skin of the user in a second direction inward toward the center of the electronic fitness device and to direct the modulated optical signal toward the optical receiver.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Inventors: Cheng-Yu Tsai, Dong-YI Wu, Brandon J. Guttersohn