Patents by Inventor Dongeun Huh

Dongeun Huh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946028
    Abstract: The presently disclosed subject matter provides a biomimetic organ model, and methods of its production and use. In one exemplary embodiment, the biomimetic organ model can be a multi-layer model including a at least two microchannels and at least one chamber slab with at least one membrane coated with cells disposed between at least one microchannel and the at least one chamber slab. In another exemplary embodiment, the biomimetic organ disease model can be a five-layer model including a first and second microchannel with a membrane-gel layer-membrane coated or encompassing cells disposed between the microchannels. In certain embodiments, at least one device can be coupled to the biomimetic organ model that delivers an agent to at least one microchannel.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 2, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Mark Mondrinos
  • Patent number: 11920116
    Abstract: The presently disclosed subject matter provides systems and methods for producing a three-dimensional model of a human cervix. A microdevice is provided for culturing human cervical cells. The microdevice can include an upper microchannel including live ectocervical epithelial cells. The microdevice can include a lower microchannel including a first parallel lane and a second parallel lane including stromal media. The first and the second parallel lanes can be lined with live vascular endothelial cells. The lower microchannel can include a third parallel lane including uterine fibroblasts and live smooth muscle cells embedded in hydrogel. The first, second, and third lanes of the lower microchannel can be separated by protrusion structures. The third parallel lane can be positioned in the lower microchannel in between the first and the second parallel lanes. The microdevice can further include a porous membrane positioned in between the upper microchannel and the lower microchannel.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 5, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Jeongyun Seo
  • Publication number: 20240026259
    Abstract: A microphysiological platform described herein includes a fluidic synthesizer with a first fluid input selectively coupleable to a source of a first input fluid solution and a second fluid input selectively coupleable to a source of a second input fluid solution. The fluidic synthesizer further includes a fluid output. The microphysiological platform further includes a fluid addressing system with a fluid input fluidically coupled to the fluidic synthesizer fluid output. The fluid addressing system further includes a first fluid output and a second fluid output. The microphysiological platform further includes a first microphysiological device with a fluid input fluidically coupled to the first fluid output of the fluid addressing system and a second microphysiological device with a fluid input fluidically coupled to the second fluid output of the fluid addressing system.
    Type: Application
    Filed: March 24, 2023
    Publication date: January 25, 2024
    Inventors: Dongeun Huh, Andrei Georgescu
  • Publication number: 20240026261
    Abstract: The disclosed subject matter provides techniques for culturing organoids or cells. A device for culturing organoids can include an access port configured to receive a solution, a loading chamber, wherein the access port is located in the loading chamber, and a plurality of culture chambers, wherein the culture chambers are radiated from the loading chamber so that the solution injected into the loading chamber through the access port is distributed into the plurality of culture chambers, wherein the plurality of culture chambers are open to an external environment and comprises a protruding edge at an opening of the plurality of culture chambers.
    Type: Application
    Filed: December 6, 2021
    Publication date: January 25, 2024
    Inventors: Dongeun HUH, Sunghee Estelle PARK
  • Publication number: 20230416661
    Abstract: System and method includes a body having a central microchannel separated by one or more porous membranes. The membranes are configured to divide the central microchannel into a two or more parallel central microchannels, wherein one or more first fluids are applied through the first central microchannel and one or more second fluids are applied through the second or more central microchannels. The surfaces of each porous membrane can be coated with cell adhesive molecules to support the attachment of cells and promote their organization into tissues on the upper and lower surface of the membrane. The pores may be large enough to only permit exchange of gases and small chemicals, or to permit migration and transchannel passage of large proteins and whole living cells. Fluid pressure, flow and channel geometry also may be varied to apply a desired mechanical force to one or both tissue layers.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Donald E. INGBER, Dongeun HUH
  • Publication number: 20230416662
    Abstract: System and method includes a body having a central microchannel separated by one or more porous membranes. The membranes are configured to divide the central microchannel into a two or more parallel central microchannels, wherein one or more first fluids are applied through the first central microchannel and one or more second fluids are applied through the second or more central microchannels. The surfaces of each porous membrane can be coated with cell adhesive molecules to support the attachment of cells and promote their organization into tissues on the upper and lower surface of the membrane. The pores may be large enough to only permit exchange of gases and small chemicals, or to permit migration and transchannel passage of large proteins and whole living cells. Fluid pressure, flow and channel geometry also may be varied to apply a desired mechanical force to one or both tissue layers.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Donald E. INGBER, Dongeun HUH
  • Publication number: 20230393120
    Abstract: The present subject matter relates to techniques for mimicking the hemostasis microenvironment and predicting the effects of drugs on hemostasis. The disclosed system can include a top layer including a plurality of top rails, and a bottom layer including a plurality of bottom rails, wherein the top layer and the bottom layer are configured to be coupled, wherein the plurality of top rails and bottom rails are configured to form a plurality of channels comprising an intravascular channel configured to circulate a first solution, an extravascular channel configured to circulate a second solution, and a vessel wall channel including a tissue factor in a hydrogel.
    Type: Application
    Filed: October 29, 2021
    Publication date: December 7, 2023
    Inventors: Keon Woo KWON, Dongeun HUH, Lawrence F. BRASS, Izmarie POVENTUD-FUENTES
  • Patent number: 11814613
    Abstract: The presently disclosed subject matter provides a biomimetic lung disease model, and methods of its production and use. In one exemplary embodiment, the biomimetic lung disease model can include a first and second microchannel with a membrane coated with airway epithelial cells disposed between the microchannels and at least one device coupled to the biomimetic model that delivers an agent to at least one microchannel. In certain embodiments, the agent is cigarette smoke.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: November 14, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Mark Mondrinos, Woo Yul Byun
  • Publication number: 20230357691
    Abstract: System and method includes a body having a central microchannel separated by one or more porous membranes. The membranes are configured to divide the central microchannel into a two or more parallel central microchannels, wherein one or more first fluids are applied through the first central microchannel and one or more second fluids are applied through the second or more central microchannels. The surfaces of each porous membrane can be coated with cell adhesive molecules to support the attachment of cells and promote their organization into tissues on the upper and lower surface of the membrane. The pores may be large enough to only permit exchange of gases and small chemicals, or to permit migration and transchannel passage of large proteins and whole living cells. Fluid pressure, flow and channel geometry also may be varied to apply a desired mechanical force to one or both tissue layers.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 9, 2023
    Inventors: Donald E. INGBER, Dongeun HUH
  • Publication number: 20230341378
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Application
    Filed: June 27, 2023
    Publication date: October 26, 2023
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11733234
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: August 22, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11732226
    Abstract: A microphysiological platform described herein includes a fluidic synthesizer with a first fluid input selectively coupleable to a source of a first input fluid solution and a second fluid input selectively coupleable to a source of a second input fluid solution. The fluidic synthesizer further includes a fluid output. The microphysiological platform further includes a fluid addressing system with a fluid input fluidically coupled to the fluidic synthesizer fluid output. The fluid addressing system further includes a first fluid output and a second fluid output. The microphysiological platform further includes a first microphysiological device with a fluid input fluidically coupled to the first fluid output of the fluid addressing system and a second microphysiological device with a fluid input fluidically coupled to the second fluid output of the fluid addressing system.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: August 22, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Andrei Georgescu
  • Publication number: 20230151316
    Abstract: The presently disclosed subject matter provides a biomimetic organ model, and methods of its production and use. In one exemplary embodiment, the biomimetic organ model can be a multi-layer model including a at least two microchannels and at least one chamber slab with at least one membrane coated with cells disposed between at least one microchannel and the at least one chamber slab. In another exemplary embodiment, the biomimetic organ disease model can be a five-layer model including a first and second microchannel with a membrane-gel layer-membrane coated or encompassing cells disposed between the microchannels. In certain embodiments, at least one device can be coupled to the biomimetic organ model that delivers an agent to at least one microchannel.
    Type: Application
    Filed: July 26, 2022
    Publication date: May 18, 2023
    Inventors: Dongeun Huh, Mark Mondrinos
  • Publication number: 20230078827
    Abstract: A microphysiological platform described herein includes a fluidic synthesizer with a first fluid input selectively coupleable to a source of a first input fluid solution and a second fluid input selectively coupleable to a source of a second input fluid solution. The fluidic synthesizer further includes a fluid output. The microphysiological platform further includes a fluid addressing system with a fluid input fluidically coupled to the fluidic synthesizer fluid output. The fluid addressing system further includes a first fluid output and a second fluid output. The microphysiological platform further includes a first microphysiological device with a fluid input fluidically coupled to the first fluid output of the fluid addressing system and a second microphysiological device with a fluid input fluidically coupled to the second fluid output of the fluid addressing system.
    Type: Application
    Filed: October 24, 2022
    Publication date: March 16, 2023
    Inventors: Dongeun Huh, Andrei Georgescu
  • Patent number: 11549937
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: January 10, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11536714
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 27, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11519903
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 6, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11506653
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 22, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11506652
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 22, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung JIn Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11453848
    Abstract: The presently disclosed subject matter provides a biomimetic organ model, and methods of its production and use. In one exemplary embodiment, the biomimetic organ model can be a multi-layer model including a at least two microchannels and at least one chamber slab with at least one membrane coated with cells disposed between at least one microchannel and the at least one chamber slab. In another exemplary embodiment, the biomimetic organ disease model can be a five-layer model including a first and second microchannel with a membrane-gel layer-membrane coated or encompassing cells disposed between the microchannels. In certain embodiments, at least one device can be coupled to the biomimetic organ model that delivers an agent to at least one microchannel.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 27, 2022
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Mark Mondrinos