Patents by Inventor Dongguang XIAO

Dongguang XIAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11753615
    Abstract: The present disclosure belongs to the field of bioengineering, and relates to breeding of industrial microorganisms, in particular to a genetically engineered strain of Saccharomyces cerevisiae, method for constructing the same, and its use for brewing, the genetically engineered strain of Saccharomyces cerevisiae heterogeneously overexpresses an acetaldehyde dehydrogenase gene ALD6, an acetyl-CoA synthase gene ACS1 and an alcohol acyltransferase gene AeAT9. The Saccharomyces cerevisiae strain with high yield of ethyl acetate and low yield of higher alcohols provided by the present disclosure not only maintains excellent ethanol fermentation characteristics, but also reducing the production of higher alcohols which adversely affect the comfort after drinking, which is of great significance for a well-maintained and strengthened flavor characteristics of Chinese Baijiu, an improved and stabilized quality thereof, and even a reform in the fermentation process thereof.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: September 12, 2023
    Assignee: Tianjin University of Science and Technology
    Inventors: Yefu Chen, Wenqi Shi, Guo Zhang, Ruirui Li, Yanfang Chen, Huan Wang, Chunhong Sun, Dongguang Xiao, Xiaole Wu, Xuewu Guo
  • Patent number: 11746353
    Abstract: A Saccharomyces cerevisiae strain with high yield of ethyl butyrate and a construction method and an application thereof are provided. The strain is obtained by over-expressing in the starting strain acetyl coenzyme A acyl transferase gene Erg10, 3-hydroxybutyryl coenzyme A dehydrogenase gene Hbd, 3-hydroxybutyryl coenzyme A dehydratase gene Crt, trans-2-enoyl coenzyme A reductase gene Ter, and alcohol acyl transferase gene AAT. Compared to the starting bacteria not producing ethyl butyrate, the yield of ethyl butyrate of the constructed strain reaches 77.33±3.79 mg/L, the yield of the ethyl butyrate of the strain with double copy expression of gene Ter and gene AAT reaches 99.65±7.32 mg/L, increased by 28.9% compared with the EST strain, and 40.93±3.18 mg/L of ethyl crotonate is unexpectedly produced.
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: September 5, 2023
    Assignee: Tianjin University of Science and Technology
    Inventors: Yefu Chen, Yanrui Ma, Yongjing Du, Sen Jiang, Jinying Ren, Guo Zhang, Xinyue Kang, Peng Zheng, Xiaole Wu, Dongguang Xiao, Xuewu Guo
  • Publication number: 20230212488
    Abstract: The present invention provides a Saccharomyces uvarum strain capable of low production of higher alcohols and strong degradation of malic acid. After the wine using Saccharomyces uvarum recombinant strain of the present invention is fermented for 5 days, with other fermentation properties unaffected, the content of isobutanol, isoamyl alcohol and phenethyl alcohol in the wine is 28.18 mg/L, 171.76 mg/L and 13.60 mg/L respectively, which is reduced by 20.28%, 14.77% and 11.26% compared with the starting strain, the total content of main higher alcohols (n-propanol, isobutanol, isoamyl alcohol and phenethyl alcohol) is reduced by 12.97%, and the content of malic acid is reduced to 1.13 g/L after fermentation, which greatly shortens the fermentation period, overcomes the influence of lactic acid bacteria fermentation in the ordinary fermentation process and unpleasant flavor caused by higher content of higher alcohols.
    Type: Application
    Filed: October 1, 2020
    Publication date: July 6, 2023
    Inventors: Cuiying ZHANG, Tong Li, Ping Li, Dongguang Xiao, Xuewu Guo, Liangcai Lin, Yefu Chen, Aiqun Yu
  • Publication number: 20220389371
    Abstract: The present disclosure belongs to the field of bioengineering, and relates to breeding of industrial microorganisms, in particular to a genetically engineered strain of Saccharomyces cerevisiae, method for constructing the same, and its use for brewing, the genetically engineered strain of Saccharomyces cerevisiae heterogeneously overexpresses an acetaldehyde dehydrogenase gene ALD6, an acetyl-CoA synthase gene ACS1 and an alcohol acyltransferase gene AeAT9. The Saccharomyces cerevisiae strain with high yield of ethyl acetate and low yield of higher alcohols provided by the present disclosure not only maintains excellent ethanol fermentation characteristics, but also reducing the production of higher alcohols which adversely affect the comfort after drinking, which is of great significance for a well-maintained and strengthened flavor characteristics of Chinese Baijiu, an improved and stabilized quality thereof, and even a reform in the fermentation process thereof.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 8, 2022
    Inventors: Yefu Chen, Wenqi Shi, Guo Zhang, Ruirui Li, Yanfang Chen, Huan Wang, Chunhong Sun, Dongguang Xiao, Xiaole Wu, Xuewu Guo
  • Patent number: 11352633
    Abstract: An Aureobasidium pullulans recombinant strain with high-yield heavy oil and a construction method and application thereof are provided. The Aureobasidium pullulans recombinant strain is obtained by knocking out a pullulan synthetase PUL gene while overexpressing an ACL gene. The obtained Aureobasidium pullulans recombinant strain can significantly increase the yield of heavy oil. After 7-day fermentation with xylose as carbon source, the yield of the heavy oil of the recombinant strain reaches 19.4372 g/L, while the yield of the heavy oil of the original strain is 10.0325 g/L, i.e. the recombinant strain improves the yield by 93.74% compared with the original strain.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: June 7, 2022
    Assignee: Tianjin University of Science and Technology
    Inventors: Yefu Chen, Siyao Huang, Peng Zheng, Yuanhua Wang, Jian Guo, Mengjuan Zhang, Xuewu Guo, Dongguang Xiao
  • Publication number: 20210198679
    Abstract: A Saccharomyces cerevisiae strain with high yield of ethyl butyrate and a construction method and an application thereof are provided. The strain is obtained by over-expressing in the starting strain acetyl coenzyme A acyl transferase gene Erg10, 3-hydroxybutyryl coenzyme A dehydrogenase gene Hbd, 3-hydroxybutyryl coenzyme A dehydratase gene Crt, trans-2-enoyl coenzyme A reductase gene Ter, and alcohol acyl transferase gene AAT. Compared to the starting bacteria not producing ethyl butyrate, the yield of ethyl butyrate of the constructed strain reaches 77.33±3.79 mg/L, the yield of the ethyl butyrate of the strain with double copy expression of gene Ter and gene AAT reaches 99.65±7.32 mg/L, increased by 28.9% compared with the EST strain, and 40.93±3.18 mg/L of ethyl crotonate is unexpectedly produced.
    Type: Application
    Filed: December 25, 2020
    Publication date: July 1, 2021
    Applicant: Tianjin University of Science and Technology
    Inventors: Yefu CHEN, Yanrui MA, Yongjing DU, Sen JIANG, Jinying REN, Guo ZHANG, Xinyue KANG, Peng ZHENG, Xiaole WU, Dongguang XIAO, Xuewu GUO
  • Publication number: 20210024942
    Abstract: An Aureobasidium pullulans recombinant strain with high-yield heavy oil and a construction method and application thereof are provided. The Aureobasidium pullulans recombinant strain is obtained by knocking out a pullulan synthetase PUL gene while overexpressing an ACL gene. The obtained Aureobasidium pullulans recombinant strain can significantly increase the yield of heavy oil. After 7-day fermentation with xylose as carbon source, the yield of the heavy oil of the recombinant strain reaches 19.4372 g/L, while the yield of the heavy oil of the original strain is 10.0325 g/L, i.e. the recombinant strain improves the yield by 93.74% compared with the original strain.
    Type: Application
    Filed: October 15, 2020
    Publication date: January 28, 2021
    Applicant: Tianjin University of Science and Technology
    Inventors: Yefu CHEN, Siyao HUANG, Peng ZHENG, Yuanhua WANG, Jian GUO, Mengjuan ZHANG, Xuewu GUO, Dongguang XIAO