Patents by Inventor Dongling LI

Dongling LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105370
    Abstract: The present invention discloses a high-entropy soft magnetic alloy with 900 K high-temperature resistance, comprising Fe, Co, Ni, Si and Al, and the atomic percent of the alloy composition is expressed as FexCoyNizSimAln, wherein x=40%-80%, y=20%-60%, z=0-30%, m=0-20%, n=0-20%, and x+y+z+m+n=100%; the atomic percent of other doping elements is p=0-5%, and 0.5?m/n?3; the performance indexes of the material include: at room temperature, saturation magnetization Ms=90-150 emu/g, and coercive force Hc=0.1-15 Oe; and at 900 K, saturation magnetization Ms=70-130 emu/g, and coercive force Hc=0.1-25 Oe.
    Type: Application
    Filed: December 6, 2023
    Publication date: March 28, 2024
    Inventors: Haizhou Wang, Runqiu Lang, Haiyang Chen, Yandong Wang, Lei Zhao, Changwang Zhu, Xiaofen Zhang, Lixia Yang, Dongling Li, Xuejing Shen, Yunhai Jia
  • Patent number: 11927511
    Abstract: The present application relates to a method for statistical distribution characterization of dendritic structures in original position of single crystal superalloy, and relates to the technical field of analysis of metal material composition and microstructure, comprising the following steps: step 1, processing a to-be-tested sample and determining a calibration coefficient; step 2, obtaining a two-dimensional element content distribution map of the to-be-tested sample; and step 3, determining the number and average spacing of primary dendrites. A composition distribution region analyzed in the present application is larger than the area of a distribution region of the traditional microscopic analysis method, and the sample preparation is simple. The distribution, number and average spacing of the primary dendrites can be obtained without metallographic corrosion sampling.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: March 12, 2024
    Assignees: NCS TESTING TECHNOLOGY CO., LTD, CENTRAL IRON AND STEEL RESEARCH INSTITUTE
    Inventors: Dongling Li, Lei Zhao, Haizhou Wang, Xuejing Shen, Qingqing Zhou, Weihao Wan, Haozhou Feng
  • Publication number: 20240066602
    Abstract: A high-throughput 3D printing system for preparing multi-component, small sized samples, includes a raw material supply module, providing a various kinds of metal powders for printing small sized samples; the first mixer module, mixing the metal powders obtained from the raw material supply module to generate the first blended metal powders; the second mixer module, mixing the first mixed metal powders, in order to generate the second blended metal powders for printing small sized samples; the first printing module, printing the secondary blended metal powder into a small-sized sample; a control module, controlling other functional modules of the high-throughput 3D printing system for generating small-size samples.
    Type: Application
    Filed: November 22, 2022
    Publication date: February 29, 2024
    Inventors: Lei Zhao, Hui Wang, Lixia Yang, Haizhou Wang, Xuejing Shen, Yunhai Jia, Dongling Li, Xing Yu, Suran Liu
  • Publication number: 20230358693
    Abstract: A component residual stress testing platform based on neutron diffraction and experimental method thereof are provided, the testing platform includes a component support, a rotating mainshaft, a first thrust cylindrical roller bearing, a first cylindrical roller bearing, a bearing spacing sleeve, a second cylindrical roller bearing, a sleeve, and a first fixed baffle. The rotating mainshaft is disposed on the component support. The first thrust cylindrical roller bearing, the first cylindrical roller bearing, the bearing spacing sleeve and the second cylindrical roller bearing are sleeved on the rotating mainshaft, the sleeve is sleeved outside the first cylindrical roller bearing, the bearing spacing sleeve and the second cylindrical roller bearing, a component to be tested is sleeved on the sleeve. The testing platform can support, move, tilt and rotate the component to be tested in a process of a residual stress testing.
    Type: Application
    Filed: September 5, 2022
    Publication date: November 9, 2023
    Inventors: LIXIA YANG, HAIZHOU WANG, LIZHI REN, DANQI HUANG, LEI ZHAO, XUEJING SHEN, DONGLING LI, ZONGXIN LIU, CHANGWANG ZHU, YANG WANG, YUNHAI JIA
  • Publication number: 20230205175
    Abstract: The present invention discloses an integrated research and development system for high-throughput preparation and statistical mapping characterization of materials, comprising: a high-throughput preparation module, a high-throughput characterization module, an automatic control module and a statistical mapping data processing module; the high-throughput preparation module is used for preparing a multi-component combinatorial-sample; the high-throughput characterization module comprises a plurality of different high-throughput characterization devices; the automatic control module comprises a special sample box, a sample moving platform, an intelligent mechanical arm and a synchronous control system; and the statistical mapping data processing module is used for constructing a statistical mapping constitutive model corresponding to position mapping according to the composition, microstructure and performance data of the combinatorial-sample.
    Type: Application
    Filed: March 1, 2023
    Publication date: June 29, 2023
    Applicant: NCS Testing Technology CO.,LTD
    Inventors: Lei Zhao, Haizhou Wang, Lixia Yang, Lei Yu, Xuebin Chen, Hui Wang, Xuejing Shen, Yunhai Jia, Dongling Li, Xing Yu
  • Publication number: 20230184703
    Abstract: A quantitative statistical characterization method of micron-level second phase in aluminum alloy based on deep learning is disclosed. The method includes obtaining a feature database of the standard sample, training the feature database by the image segmentation network U-Net based on deep learning to obtain a U-Net segmentation model, selecting the corresponding parameters of the optimal precision and establishing a U-Net target model; clipping the aluminum alloy image to be detected and inputting the clipped images into the U-net target model, obtaining the size, area and position information of the second phase through the connected region algorithm, carrying out statistical distribution of the data set combined with the mathematical statistical method, and restoring the position information to the surface of the aluminum alloy to be tested to obtain the full-field quantitative statistical distribution and visualization results.
    Type: Application
    Filed: April 13, 2021
    Publication date: June 15, 2023
    Applicant: Central Iron & Steel Research Institute
    Inventors: Dandan Sun, Bing Han, Weihao Wan, Haizhou Wang, Lei Zhao, Dongling Li, Caichang Dong
  • Publication number: 20230103352
    Abstract: Provided is the use of a CD24 protein for treating a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
    Type: Application
    Filed: February 10, 2021
    Publication date: April 6, 2023
    Applicant: Oncoimmune, Inc.
    Inventors: Xianfeng Fang, Yang Liu, Pan Zheng, Martin Devenport, Dongling Li, Libing Mu
  • Patent number: 11506650
    Abstract: The invention belongs to the technical field of quantitative statistical distribution analysis for micro-structures of metal materials, and relates to a method for automatic quantitative statistical distribution characterization of dendrite structures in a full view field of metal materials. According to the method based on deep learning in the present invention, dendrite structure feature maps are marked and trained to obtain a corresponding object detection model, so as to carry out automatic identification and marking of dendrite structure centers in a full view field; and in combination with an image processing method, feature parameters in the full view field such as morphology, position, number and spacing of all dendrite structures within a large range are obtained quickly, thereby achieving quantitative statistical distribution characterization of dendrite structures in the metal material.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: November 22, 2022
    Assignee: THE NCS TESTING TECHNOLOGY CO., LTD.
    Inventors: Dongling Li, Weihao Wan, Jie Li, Haizhou Wang, Lei Zhao, Xuejing Shen, Yunhai Jia
  • Publication number: 20220299455
    Abstract: A method for quantitatively characterizing a dendrite segregation and dendrite spacing of a high-temperature alloy ingot is disclosed. The method includes preparation and surface treatment of the high-temperature alloy ingot, selection of calibration sample and determination of an element content, establishment of quantitative method for elements in micro-beam X-ray fluorescence spectrometer, quantitative distribution analysis of element components of the high-temperature alloy, quantitative characterization of characteristic element line distribution of high-temperature alloy, and analysis of a characteristic element line distribution map and statistics of a secondary dendrite spacing.
    Type: Application
    Filed: March 18, 2022
    Publication date: September 22, 2022
    Inventors: DONGLING LI, HAIZHOU WANG, XUEJING SHEN, LEI ZHAO, WENYI CAI, MINGBO LIU, ZONGXIN LIU, YA PENG
  • Publication number: 20220252488
    Abstract: The present application relates to a method for statistical distribution characterization of dendritic structures in original position of single crystal superalloy, and relates to the technical field of analysis of metal material composition and microstructure, comprising the following steps: step 1, processing a to-be-tested sample and determining a calibration coefficient; step 2, obtaining a two-dimensional element content distribution map of the to-be-tested sample; and step 3, determining the number and average spacing of primary dendrites. A composition distribution region analyzed in the present application is larger than the area of a distribution region of the traditional microscopic analysis method, and the sample preparation is simple. The distribution, number and average spacing of the primary dendrites can be obtained without metallographic corrosion sampling.
    Type: Application
    Filed: January 27, 2022
    Publication date: August 11, 2022
    Inventors: DONGLING LI, LEI ZHAO, HAIZHOU WANG, XUEJING SHEN, QINGQING ZHOU, WEIHAO WAN, HAOZHOU FENG
  • Patent number: 11193867
    Abstract: The present invention relates to a test system and method capable of simultaneously carrying out a high-throughput test of mechanical properties for miniature specimens. The system comprises one workstation (17) and a plurality of specimen test modules (16) installed horizontally or vertically on a workbench (15), wherein the workstation (17) comprises an operation interface, a data processing unit and a load output unit; each specimen test module (16) comprises a drive unit (5), an interchangeable clamp unit (8), a displacement sensor (2), and a load sensor (14); the workstation (17) controls the drive unit (5) of the specimen test module (16) and receives detection data of the displacement sensor (2) and the load sensor (14); each specimen test module (16) optionally performs mechanical property testing independently; and the workstation (17) controls simultaneously started testing of a plurality of specimens (9).
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: December 7, 2021
    Assignee: THE NCS TESTING TECHNOLOGY CO., LTD.
    Inventors: Guiyong Wang, Haizhou Wang, Linmao Zhu, Zhigang Yang, Peng Wang, Tiezhu Zhu, Lei Zhao, Dongling Li
  • Publication number: 20210356369
    Abstract: The present invention discloses a high throughput statistical characterization method of metal micromechanical properties, which comprises: grinding and polishing a metal sample until specular reflection finish satisfies a test requirement; marking position coordinates of a to-be-measured area on the metal sample by a microhardness tester to ensure the comparison of the same to-be-measured area; conducting an isostatic pressing strain test on the to-be-measured area by an isostatic pressing technology; and comparing high throughput characterization of components, microstructures, microdefects and three-dimensional surface morphology of the metal sample before and after isostatic pressing strain to obtain the full-view-field cross-scale high throughput statistical characterization of micromechanical property uniformity of the metal sample.
    Type: Application
    Filed: August 1, 2021
    Publication date: November 18, 2021
    Inventors: Haizhou WANG, Qun REN, Lei ZHAO, Xuejing SHEN, Hui WANG, Dongling LI, Weihao WAN, Wenyu ZHANG, Xing YU, Lixia YANG
  • Patent number: 11040397
    Abstract: A sleeve mold for a method of high-throughput hot isostatic pressing micro-synthesis for combinatorial materials includes a honeycomb-array-sleeve and an upper cover, wherein a plurality of single cells are tightly arranged inside the honeycomb-array-sleeve, an exhaust tube is arranged on the upper cover, after the single cells are filled with powder materials, the upper cover is sealed welding on the honeycomb-array-sleeve, and the honeycomb-array-sleeve and the upper cover are both integrally produced by additive manufacturing. According to the method and the sleeve mold, the powder metallurgy hot isostatic pressing process is utilized to prepare small-size bulk combinatorial materials with multiple discrete components rapidly at one time.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: June 22, 2021
    Assignee: CENTRAL IRON AND STEEL RESEARCH INSTITUTE
    Inventors: Haizhou Wang, Yunhai Jia, Lei Zhao, Xuebin Chen, Hui Wang, Man Hu, Guang Feng, Dongling Li, Peng Wang, Xiaojia Li
  • Publication number: 20210063376
    Abstract: The invention belongs to the technical field of quantitative statistical distribution analysis for micro-structures of metal materials, and relates to a method for automatic quantitative statistical distribution characterization of dendrite structures in a full view field of metal materials. According to the method based on deep learning in the present invention, dendrite structure feature maps are marked and trained to obtain a corresponding object detection model, so as to carry out automatic identification and marking of dendrite structure centers in a full view field; and in combination with an image processing method, feature parameters in the full view field such as morphology, position, number and spacing of all dendrite structures within a large range are obtained quickly, thereby achieving quantitative statistical distribution characterization of dendrite structures in the metal material.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 4, 2021
    Inventors: Dongling LI, Weihao WAN, Jie LI, Haizhou WANG, Lei ZHAO, Xuejing SHEN, Yunhai JIA
  • Publication number: 20210033549
    Abstract: The present invention discloses, a full-view-field quantitative statistical distribution representation method for microstructures of ?? phases in a metal material, comprising the following steps: step a: labeling ?? phases, cloud clutters and ? matrixes by Labelme, and then making standard feature training samples; step b: building a deep learning-based feature recognition and extraction model by means of BDU-Net; step e: collecting ?? feature maps in the metal material to be detected; step d: automatically recognizing and extracting the ?? phases; and step e: performing in-situ quantitative statistical distribution representation on the ? phases in the full view field within a large range.
    Type: Application
    Filed: October 12, 2020
    Publication date: February 4, 2021
    Inventors: Weihao Wan, Dongling Li, Haizhou Wang, Lei Zhao, Xuejing Shen, Yunhai Jia, Bing Han, Jie Li, Yuhua Lu
  • Patent number: 10895521
    Abstract: The invention belongs to the technical field of the quantitative statistical distribution analysis of the features from characteristic images of microstructures and precipitated phases in metal materials, and relates to a quantitative statistical distribution characterization method of precipitate particles with the full field of view in a metal material. The method comprises the following steps of electrolytic corrosion of a metallic material specimen, automatic collection of characteristic images of microstructure, automatic stitching and fusion of the full-view-field microstructure images, automatic identification and segmentation of the precipitate particles and quantitative distribution characterization of the precipitate particles with the full field of view in a large-range scale.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: January 19, 2021
    Assignee: CENTRAL IRON AND STEEL RESEARCH INSTITUTE
    Inventors: Dongling Li, Xuejing Shen, Lei Zhao, Haizhou Wang, Weihao Wan, Bing Han, Yuhua Lu, Feifei Feng, Chao Li
  • Patent number: 10804073
    Abstract: An apparatus and method for a large-scale high-throughput quantitative characterization and three-dimensional reconstruction of a material structure. The apparatus having a glow discharge sputtering unit, a sample transfer device, a scanning electron microscope unit and a GPU computer workstation. The glow discharge sputtering unit can achieve large size (cm order), nearly flat and fast sample preparation, and controllable achieve layer-by-layer ablation preparation along the depth direction of the sample surface; rapid scanning electron microscopy (SEM) can achieve large-scale and high-throughput acquisition of sample characteristic maps. The sample transfer device is responsible for transferring the sample between the glow discharge sputtering source and the scanning electron microscope in an accurately positioning manner.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: October 13, 2020
    Assignee: THE NCS TESTING TECHNOLOGY CO., LTD.
    Inventors: Haizhou Wang, Xing Yu, Xuejing Shen, Yunhai Jia, Xiaojia Li, Yuhua Lu, Weihao Wan, Jianqiu Luo, Dongling Li, Lei Zhao
  • Publication number: 20200319071
    Abstract: The present invention relates to a test system and method capable of simultaneously carrying out a high-throughput test of mechanical properties for miniature specimens. The system comprises one workstation (17) and a plurality of specimen test modules (16) installed horizontally or vertically on a workbench (15), wherein the workstation (17) comprises an operation interface, a data processing unit and a load output unit; each specimen test module (16) comprises a drive unit (5), an interchangeable to clamp unit (8), a displacement sensor (2), and a load sensor (14); the workstation (17) controls the drive unit (5) of the specimen test module (16) and receives detection data of the displacement sensor (2) and the load sensor (14); each specimen test module (16) optionally performs mechanical property testing independently; and the workstation (17) is controls simultaneously started testing of a plurality of specimens (9).
    Type: Application
    Filed: March 31, 2020
    Publication date: October 8, 2020
    Inventors: Guiyong WANG, Haizhou WANG, Linmao ZHU, Zhigang YANG, Peng WANG, Tiezhu ZHU, Lei ZHAO, Dongling LI
  • Publication number: 20200294760
    Abstract: An apparatus and method for a large-scale high-throughput quantitative characterization and three-dimensional reconstruction of a material structure. The apparatus having a glow discharge sputtering unit, a sample transfer device, a scanning electron microscope unit and a GPU computer workstation. The glow discharge sputtering unit can achieve large size (cm order), nearly flat and fast sample preparation, and controllable achieve layer-by-layer ablation preparation along the depth direction of the sample surface; rapid scanning electron microscopy (SEM) can achieve large-scale and high-throughput acquisition of sample characteristic maps. The sample transfer device is responsible for transferring the sample between the glow discharge sputtering source and the scanning electron microscope in an accurately positioning manner.
    Type: Application
    Filed: October 30, 2019
    Publication date: September 17, 2020
    Inventors: Haizhou WANG, Xing YU, Xuejing SHEN, Yunhai JIA, Xiaojia LI, Yuhua LU, Weihao WAN, Jianqiu LUO, Dongling LI, Lei ZHAO
  • Publication number: 20200215613
    Abstract: The invention relates to a method of high-throughput hot isostatic pressing micro-synthesis for the combinatorial materials and a sleeve mould thereof. The sleeve mould (2) comprises a honeycomb-array-sleeve (3) and an upper cover (4), wherein a plurality of single cells (6) are tightly arranged inside the honeycomb-array-sleeve (3), an exhaust tube (5) is arranged on the upper cover (4), after the single cells (6) are filled with powder materials, the upper cover (4) is sealed welding on the honeycomb-array-sleeve (3), and the honeycomb-array-sleeve (3) and the upper cover (4) are both integrally produced by additive manufacturing. According to the method and the sleeve mould, the powder metallurgy hot isostatic pressing process is utilized to prepare small-size bulk combinatorial materials with multiple discrete components rapidly at one time. This method has the characteristics of high sintering speed, high compaction density, good thermal diffusivity, short production cycle and low material consumption.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 9, 2020
    Inventors: Haizhou WANG, Yunhai JIA, Lei ZHAO, Xuebin CHEN, Hui WANG, Man HU, Guang FENG, Dongling LI, Peng WANG, Xiaojia LI