Patents by Inventor Donglu Shi

Donglu Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220354787
    Abstract: Disclosed herein are nanoparticle compositions containing that may be created by functionalizing polyethylenimine (PEI) with fatty acids and carboxylate terminated poly(ethylene glycol) (PEG). The disclosed compositions may be delivered to an individual in need thereof via delivery into blood circulation, where the nanoparticle compositions show an exceptionally high specificity to the pulmonary microvascular endothelium with minimal targeting of other cell types in the lung, to provide delivery of therapeutic agents such as stabilized nucleic acids. Methods of using the compositions are also disclosed.
    Type: Application
    Filed: July 7, 2022
    Publication date: November 10, 2022
    Inventors: Vladimir Kalinichenko, Andrew Dunn, Donglu Shi
  • Publication number: 20200206134
    Abstract: Disclosed herein are nanoparticle compositions containing that may be created by functionalizing polyethylenimine (PEI) with fatty acids and carboxylate terminated poly(ethylene glycol) (PEG). The disclosed compositions may be delivered to an individual in need thereof via delivery into blood circulation, where the nanoparticle compositions show an exceptionally high specificity to the pulmonary microvascular endothelium with minimal targeting of other cell types in the lung, to provide delivery of therapeutic agents such as stabilized nucleic acids. Methods of using the compositions are also disclosed.
    Type: Application
    Filed: July 17, 2018
    Publication date: July 2, 2020
    Inventors: Vladimir Kalinichenko, Andrew Dunn, Donglu Shi
  • Patent number: 5929001
    Abstract: A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology.
    Type: Grant
    Filed: October 11, 1995
    Date of Patent: July 27, 1999
    Assignee: University of Chicago
    Inventors: Kenneth C. Goretta, Michael T. Lanagan, Dean J. Miller, Suvankar Sengupta, John C. Parker, Jieguang Hu, Uthamalingam Balachandran, Richard W. Siegel, Donglu Shi
  • Patent number: 5776864
    Abstract: A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.
    Type: Grant
    Filed: April 1, 1997
    Date of Patent: July 7, 1998
    Assignee: The University of Chicago
    Inventors: Volker Todt, Dean J. Miller, Donglu Shi, Suvankar Sengupta
  • Patent number: 5549748
    Abstract: A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.
    Type: Grant
    Filed: January 12, 1995
    Date of Patent: August 27, 1996
    Assignee: University of Chicago
    Inventors: Volker R. Todt, Suvankar Sengupta, Donglu Shi
  • Patent number: 5504060
    Abstract: A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.
    Type: Grant
    Filed: January 12, 1995
    Date of Patent: April 2, 1996
    Assignee: University of Chicago
    Inventors: Volker R. Todt, Suvankar Sengupta, Donglu Shi
  • Patent number: 5157014
    Abstract: A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.
    Type: Grant
    Filed: November 23, 1988
    Date of Patent: October 20, 1992
    Assignee: Arch Development Corp.
    Inventor: Donglu Shi
  • Patent number: 5114909
    Abstract: A fundamental pinning mechanism has been identified in the Bi-Sr-Ca-Cu-O system. The pinning strength has been greatly increased by the introduction of calcium- and copper-rich precipitates into the sample matrix. The calcium and copper are supersaturated in the system by complete melting, and the fine calcium and copper particles precipitated during subsequent crystallization anneal to obtain the superconducting phases. The intragrain critical current density has been increased from the order of 10.sup.5 A/cm.sup.2 to 10.sup.7 A/cm.sup.2 at 5 T.
    Type: Grant
    Filed: February 28, 1990
    Date of Patent: May 19, 1992
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Donglu Shi