Patents by Inventor Dongmiao SONG

Dongmiao SONG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12033059
    Abstract: The present invention discloses a method for predicting bearing life based on a hidden Markov model (HMM) and transfer learning, including the following steps: (1) acquiring an original signal of full life of a rolling bearing; and extracting a feature set including a time domain feature, a time-frequency domain feature, and a trigonometric function feature; (2) inputting the feature set into an HMM to predict a hidden state, to obtain a failure occurrence time (FOT); (3) constructing a multilayer perceptron (MLP) model, obtaining a domain invariant feature and an optimal model parameter, and obtaining a neural network life prediction model; and (4) inputting the remaining target domain feature sets into the neural network life prediction model, and predicting the remaining life of the bearing. In the present invention, MLP-based transfer learning is used to resolve distribution differences in a source domain and a target domain caused by different operating conditions.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: July 9, 2024
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jun Zhu, Changqing Shen, Nan Chen, Dongmiao Song, Jianqin Zhou, Jun Wang, Juanjuan Shi, Weiguo Huang, Zhongkui Zhu
  • Patent number: 11886311
    Abstract: The invention relates to a fault diagnosis method for a rolling bearing under variable working conditions. Based on a convolutional neural network, a transfer learning algorithm is combined to handle the problem of the reduced universality of deep learning models. Data acquired under different working conditions is segmented to obtain samples. The samples are preprocessed by using FFT. Low-level features of the samples are extracted by using improved ResNet-50, and a multi-scale feature extractor analyzes the low-level features to obtain high-level features as inputs of a classifier. In a training process, high-level features of training samples and test samples are extracted, and a conditional distribution distance between them is calculated as a part of a target function for backpropagation to implement intra-class adaptation, thereby reducing the impact of domain shift, to enable a deep learning model to better carry out fault diagnosis tasks.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: January 30, 2024
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Changqing Shen, Xu Wang, Jing Xie, Aiwen Zhang, Dong Wang, Xiaofeng Shang, Dongmiao Song, Xingxing Jiang, Jun Wang, Juanjuan Shi, Weiguo Huang, Zhongkui Zhu
  • Patent number: 11644391
    Abstract: The present invention discloses a fault diagnosis method under a convergence trend of a center frequency, including: (1) acquiring a dynamic signal x(t) of a rotary machine equipment; (2) setting initial decomposition parameters of a variational model; (3) decomposing the dynamic signal x(t) by using the variational model with the set initial decomposition parameters, and traversing a signal analysis band and performing iterative decomposition on the dynamic signal x(t) under the guidance of a convergence trend of a center frequency, to obtain optimized modals {m1 . . . mn . . . mN} and corresponding center frequencies {?1 . . . ?n . . . ?N}; (4) searching a fault related modal mI, guiding parameter optimization by using a center frequency ?I of the fault related modal mI, and retrieving an optimal target component mI including fault information; and (5) performing envelopment analysis on the optimal target component mI, and diagnosing the rotary machine equipment according to an envelope spectrum.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: May 9, 2023
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Xingxing Jiang, Changqing Shen, Jianqin Zhou, Dongmiao Song, Wenjun Guo, Guifu Du, Jun Wang, Juanjuan Shi, Weiguo Huang, Zhongkui Zhu
  • Publication number: 20220327035
    Abstract: The invention relates to a fault diagnosis method for a rolling bearing under variable working conditions. Based on a convolutional neural network, a transfer learning algorithm is combined to handle the problem of the reduced universality of deep learning models. Data acquired under different working conditions is segmented to obtain samples. The samples are preprocessed by using FFT. Low-level features of the samples are extracted by using improved ResNet-50, and a multi-scale feature extractor analyzes the low-level features to obtain high-level features as inputs of a classifier. In a training process, high-level features of training samples and test samples are extracted, and a conditional distribution distance between them is calculated as a part of a target function for backpropagation to implement intra-class adaptation, thereby reducing the impact of domain shift, to enable a deep learning model to better carry out fault diagnosis tasks.
    Type: Application
    Filed: August 4, 2020
    Publication date: October 13, 2022
    Inventors: Changqing SHEN, Xu WANG, Jing XIE, Aiwen ZHANG, Dong WANG, Xiaofeng SHANG, Dongmiao SONG, Xingxing JIANG, Jun WANG, Juanjuan SHI, Weiguo HUANG, Zhongkui ZHU
  • Publication number: 20220050024
    Abstract: The present invention discloses a fault diagnosis method under a convergence trend of a center frequency, including: (1) acquiring a dynamic signal x(t) of a rotary machine equipment; (2) setting initial decomposition parameters of a variational model; (3) decomposing the dynamic signal x(t) by using the variational model with the set initial decomposition parameters, and traversing a signal analysis band and performing iterative decomposition on the dynamic signal x(t) under the guidance of a convergence trend of a center frequency, to obtain optimized modals {m1 . . . mn . . . mN} and corresponding center frequencies {?1 . . . ?n . . . ?N}; (4) searching a fault related modal mI, guiding parameter optimization by using a center frequency ?I of the fault related modal mI, and retrieving an optimal target component mI including fault information; and (5) performing envelopment analysis on the optimal target component mI, and diagnosing the rotary machine equipment according to an envelope spectrum.
    Type: Application
    Filed: July 30, 2020
    Publication date: February 17, 2022
    Inventors: Xingxing JIANG, Changqing SHEN, Jianqin ZHOU, Dongmiao SONG, Wenjun GUO, Guifu DU, Jun WANG, Juanjuan SHI, Weiguo HUANG, Zhongkui ZHU
  • Publication number: 20210374506
    Abstract: The present invention discloses a method for predicting bearing life based on a hidden Markov model (HMM) and transfer learning, including the following steps: (1) acquiring an original signal of full life of a rolling bearing; and extracting a feature set including a time domain feature, a time-frequency domain feature, and a trigonometric function feature; (2) inputting the feature set into an HMM to predict a hidden state, to obtain a failure occurrence time (FOT); (3) constructing a multilayer perceptron (MLP) model, obtaining a domain invariant feature and an optimal model parameter, and obtaining a neural network life prediction model; and (4) inputting the remaining target domain feature sets into the neural network life prediction model, and predicting the remaining life of the bearing. In the present invention, MLP-based transfer learning is used to resolve distribution differences in a source domain and a target domain caused by different operating conditions.
    Type: Application
    Filed: August 7, 2020
    Publication date: December 2, 2021
    Inventors: Jun ZHU, Changqing SHEN, Nan CHEN, Dongmiao SONG, Jianqin ZHOU, Jun WANG, Juanjuan SHI, Weiguo HUANG, Zhongkui ZHU