Patents by Inventor Dongxiang Wang

Dongxiang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10295737
    Abstract: The present invention relates to the field of single-mode optical fibers and discloses a bending-insensitive, radiation-resistant single-mode optical fiber, sequentially including from inside to outside: a core, inner claddings, and an outer cladding, all made from a quartz material. The inner claddings comprise, from inside to outside, a first fluorine-doped inner cladding and a second fluorine-doped inner cladding. The core and the first fluorine-doped inner cladding are not doped with germanium. The respective concentrations of other metal impurities and phosphorus are less than 0.1 ppm. By mass percent, the core has a fluorine dopant content of 0-0.45% and a chlorine content of 0.01-0.10%; the first fluorine-doped inner cladding has a fluorine concentration of 1.00-1.55%; and the second fluorine-doped inner cladding has a fluorine concentration of 3.03-5.00%.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: May 21, 2019
    Assignee: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD
    Inventors: Qi Mo, Lijie Huang, Huang Yu, Cheng Liu, Wen Chen, Zhiqiang Yu, Dongxiang Wang, Bingfeng Cai, Liming Chen, Huiping Shi
  • Publication number: 20180299615
    Abstract: The present invention relates to the field of single-mode optical fibers and discloses a bending-insensitive, radiation-resistant single-mode optical fiber, sequentially including from inside to outside: a core, inner claddings, and an outer cladding, all made from a quartz material. The inner claddings comprise, from inside to outside, a first fluorine-doped inner cladding and a second fluorine-doped inner cladding. The core and the first fluorine-doped inner cladding are not doped with germanium. The respective concentrations of other metal impurities and phosphorus are less than 0.1 ppm. By mass percent, the core has a fluorine dopant content of 0-0.45% and a chlorine content of 0.01-0.10%; the first fluorine-doped inner cladding has a fluorine concentration of 1.00-1.55%; and the second fluorine-doped inner cladding has a fluorine concentration of 3.03-5.00%.
    Type: Application
    Filed: October 21, 2016
    Publication date: October 18, 2018
    Applicant: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD
    Inventors: Qi MO, Lijie HUANG, Huang YU, Cheng LIU, Wen CHEN, Zhiqiang YU, Dongxiang WANG, Bingfeng CAI, Liming CHEN, Huiping SHI
  • Patent number: 9739936
    Abstract: A low-loss few-mode fiber relates to the technical field of optical communications and related sensing devices, and includes, from inside to outside, a core layer (1), a fluorine-doped quartz inner cladding (2), a fluorine-doped quartz second core layer (3), a fluorine-doped quartz depressed cladding (4) and a fluorine-doped quartz outer cladding (5); germanium element is not doped within the core layer (1), the refractive index of the core layer (1) is in gradient distribution, and the distribution is a power-exponent distribution; the maximum value of difference in relative refractive index between the core layer (1) and the fluorine-doped quartz inner cladding (2) is 0.3% to 0.9%; the relative refractive index difference of the fluorine-doped quartz inner cladding (2) with respect to synthetic quartz is ?0.3% to ?0.5%; the difference in relative refractive index between the fluorine-doped quartz second core layer (3) and the fluorine-doped quartz inner cladding (2) is 0.05% to 0.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 22, 2017
    Assignees: WUHAN RESEARCH INSTITUTE OF POSTS AND TELECOMMUNICATIONS, FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD.
    Inventors: Qi Mo, Huang Yu, Wen Chen, Cheng Du, Zhiqiang Yu, Dongxiang Wang, Bingfeng Cai
  • Publication number: 20170115450
    Abstract: A low-loss few-mode fiber relates to the technical field of optical communications and related sensing devices, and includes, from inside to outside, a core layer (1), a fluorine-doped quartz inner cladding (2), a fluorine-doped quartz second core layer (3), a fluorine-doped quartz depressed cladding (4) and a fluorine-doped quartz outer cladding (5); germanium element is not doped within the core layer (1), the refractive index of the core layer (1) is in gradient distribution, and the distribution is a power-exponent distribution; the maximum value of difference in relative refractive index between the core layer (1) and the fluorine-doped quartz inner cladding (2) is 0.3% to 0.9%; the relative refractive index difference of the fluorine-doped quartz inner cladding (2) with respect to synthetic quartz is ?0.3% to ?0.5%; the difference in relative refractive index between the fluorine-doped quartz second core layer (3) and the fluorine-doped quartz inner cladding (2) is 0.05% to 0.
    Type: Application
    Filed: November 3, 2015
    Publication date: April 27, 2017
    Inventors: QI MO, HUANG YU, WEN CHEN, CHENG DU, ZHIQIANG YU, DONGXIANG WANG, BINGFENG CAI
  • Patent number: 9014523
    Abstract: A large mode field active optical fiber and manufacture method thereof is provided. The large mode field active optical fiber is formed by drawing a fiber core (1), a quartz glass internal cladding (2), a quartz glass outer cladding (3), and a coating (4). The quartz glass internal cladding (2), the quartz glass outer cladding (3), and the coating (4) are sequentially coated on the outer surface of the fiber core (1). The fiber core (1) is formed by depositing, melting, and shrinking the tetrachlorosilane doped with rare earth ions in a quartz glass tube. The refractive index of the fiber core (1) is a graded refractive index, and the section parameter a thereof is 1???3. The appearance of the quartz glass inner cladding (2) is regular multi-prism shaped.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: April 21, 2015
    Assignee: Fiberhome Telecommunications Technologies Co., Ltd.
    Inventors: Wei Chen, Shiyu Li, Daoyu Lei, Dongxiang Wang, Wenyong Luo, Wenjun Huang, Fuming Hu, Peng Hu
  • Publication number: 20120263428
    Abstract: A large mode field active optical fiber and manufacture method thereof is provided. The large mode field active optical fiber is formed by drawing a fiber core (1), a quartz glass internal cladding (2), a quartz glass outer cladding (3), and a coating (4). The quartz glass internal cladding (2), the quartz glass outer cladding (3), and the coating (4) are sequentially coated on the outer surface of the fiber core (1). The fiber core (1) is formed by depositing, melting, and shrinking the tetrachlorosilane doped with rare earth ions in a quartz glass tube. The refractive index of the fiber core (1) is a graded refractive index, and the section parameter a thereof is 1???3. The appearance of the quartz glass inner cladding (2) is regular multi-prism shaped.
    Type: Application
    Filed: November 24, 2010
    Publication date: October 18, 2012
    Inventors: Wei Chen, Shiyu Li, Daoyu Lei, Dongxiang Wang, Wenyong Luo, Wenjun Huang, Fuming Hu, Peng Hu