Patents by Inventor DONGXU LI

DONGXU LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120090935
    Abstract: An automatic transmission for a vehicle includes a hydraulically-controlled component and a pilot valve. The pilot valve includes at least one micro-electrical-mechanical-systems (MEMS) based device. The pilot valve is operably connected to and is configured for actuating the hydraulically-controlled component. The pilot valve additionally includes a regulating valve operably connected to the pilot valve and to the hydraulically-controlled component. The regulating valve is configured to direct fluid to the hydraulically-controlled component when actuated by the pilot valve.
    Type: Application
    Filed: April 28, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Farzad Samie, Andrew L. Bartos, Chunhao J. Lee, Chi-Kuan Kao, Kumaraswamy V. Hebbale, Dongxu Li, Kevin B. Rober
  • Publication number: 20120090945
    Abstract: A pressure and flow control system for a dog clutch includes a pilot valve, a regulating valve, and a selector. The pilot valve is configured to produce a pilot signal and includes a first valve, which is a MEMS microvalve. The regulating valve is in fluid communication with the pilot valve, and is configured to receive the pilot signal. The regulating valve is further configured to output a control signal. The selector is configured to engage and disengage the dog clutch in response to the control signal.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chunhao J. Lee, Farzad Samie, Chi-Kuan Kao, Kumaraswamy V. Hebbale, Dongxu Li, Andrew L. Bartos, Kevin B. Rober
  • Publication number: 20120090944
    Abstract: An automated manual transmission includes a hydraulic device, a pilot valve, and a regulating valve. The pilot valve is operably connected to the hydraulic device and configured to actuate. The pilot valve includes at least one micro-electro-mechanical systems (MEMS) based device. The regulating valve is operably connected to the pilot valve and the hydraulic device. The regulating valve is configured to direct fluid to the hydraulic device based on the actuation of the pilot valve.
    Type: Application
    Filed: August 1, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dongxu Li, Farzad Samie, Chunhao J. Lee, Kumaraswamy V. Hebbale, Chi-Kuan Kao, Andrew L. Bartos, Kevin B. Rober, Bret M. Olson
  • Publication number: 20120078476
    Abstract: A powertrain includes a transmission coupled to a driveline. A method for monitoring torque in the powertrain includes monitoring signal outputs from a first rotational sensor and a second rotational sensor configured to monitor respective rotational positions of first and second locations of a driveline, determining a positional relationship between the first and second locations using positional identifiers of the first and second rotational sensors, deriving a twist angle from the positional relationship between the first and second rotational sensors, calculating a magnitude of driveline torque corresponding to the twist angle, and controlling the vehicular powertrain according to the calculated magnitude of driveline torque.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: DONGXU LI, FARZAD SAMIE, Chunhao J. Lee, Chi-Kuan Kao, Kumaraswamy V. Hebbale
  • Publication number: 20120078475
    Abstract: A powertrain includes a transmission coupled to a driveline. A method for monitoring torque of the driveline includes monitoring signals from first and second rotational sensors located at respective first and second rotationally-coupled positions of the driveline separated by a distance along the driveline, determining rotation of the driveline at the first and second rotationally-coupled positions from said signals, determining a twist angle derived from a difference between the rotations of the driveline at the first and second rotationally-coupled positions, calculating a driveline torque corresponding to the twist angle, and controlling operation of the powertrain in response to the driveline torque.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: DONGXU LI, KUMARASWAMY V. HEBBALE, Chunhao I. Lee, Farzad Samie, Chi-Kuan Kao, Ming Cao