Patents by Inventor Donna M. Salmi

Donna M. Salmi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210267527
    Abstract: In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: James D. REINKE, Xusheng ZHANG, Vinod SHARMA, Vladimir P. NIKOLSKI, Michael B. TERRY, Scott A. HARELAND, Daniel L. HANSEN, Donna M. SALMI
  • Patent number: 11020038
    Abstract: In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 1, 2021
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, Xusheng Zhang, Vinod Sharma, Vladimir P. Nikolski, Michael B. Terry, Scott A. Hareland, Daniel L. Hansen, Donna M. Salmi
  • Patent number: 10448855
    Abstract: In situations in which an implantable medical device (IMD) (e.g., an extravascular ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the IMD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the IMD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the IMD includes a pace pulse detector that detects, based on the processing of sensed electrical signals, delivery of a pacing pulse from a second implantable medical device and blank, based on the detection of the pacing pulse, the sensed electrical signal to remove the pacing pulse from the sensed electrical signal.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: October 22, 2019
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, Xusheng Zhang, Vinod Sharma, Vladimir P. Nikolski, Michael B. Terry, Scott A. Hareland, Daniel L. Hansen, Donna M. Salmi
  • Publication number: 20190183374
    Abstract: In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
    Type: Application
    Filed: February 19, 2019
    Publication date: June 20, 2019
    Inventors: James D. REINKE, Xusheng ZHANG, Vinod SHARMA, Vladimir P. NIKOLSKI, Michael B. TERRY, Scott A. HARELAND, Daniel L. HANSEN, Donna M. SALMI
  • Patent number: 10226630
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: March 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: Saul E Greenhut, Robert T Taepke, David R Bloem, Yong K Cho, Donna M Salmi
  • Patent number: 10226197
    Abstract: In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: March 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, Xusheng Zhang, Vinod Sharma, Vladimir P. Nikolski, Michael B. Terry, Scott A. Hareland, Daniel L. Hansen, Donna M. Salmi
  • Publication number: 20160220825
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Application
    Filed: January 25, 2016
    Publication date: August 4, 2016
    Inventors: Saul E. Greenhut, Robert T. Taepke, David R. Bloem, Yong K. Cho, Donna M. Salmi
  • Patent number: 9254091
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 9, 2016
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Robert T. Taepke, David R. Bloem, Yong K. Cho, Donna M. Salmi
  • Patent number: 9241640
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: January 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Robert T. Taepke, David R. Bloem, Yong K. Cho, Donna M. Salmi
  • Publication number: 20150305642
    Abstract: In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 29, 2015
    Inventors: James D. REINKE, Xusheng ZHANG, Vinod SHARMA, Vladimir P. NIKOLSKI, Michael B. TERRY, Scott A. HARELAND, Daniel L. HANSEN, Donna M. SALMI
  • Publication number: 20150305640
    Abstract: In situations in which an implantable medical device (IMD) (e.g., an extravascular ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the IMD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the IMD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the IMD includes a pace pulse detector that detects, based on the processing of sensed electrical signals, delivery of a pacing pulse from a second implantable medical device and blank, based on the detection of the pacing pulse, the sensed electrical signal to remove the pacing pulse from the sensed electrical signal.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 29, 2015
    Inventors: James D. REINKE, Xusheng ZHANG, Vinod SHARMA, Vladimir P. NIKOLSKI, Michael B. TERRY, Scott A. HARELAND, Daniel L. HANSEN, Donna M. SALMI
  • Publication number: 20120029364
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Application
    Filed: April 25, 2011
    Publication date: February 2, 2012
    Inventors: Saul E. Greenhut, Robert T. Taepke, David R. Bloem, Yong K. Cho, Donna M. Salmi
  • Publication number: 20120029365
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Application
    Filed: April 25, 2011
    Publication date: February 2, 2012
    Inventors: Saul E. Greenhut, Robert T. Taepke, David R. Bloem, Yong K. Cho, Donna M. Salmi