Patents by Inventor Donna-Ruth W. Yost

Donna-Ruth W. Yost has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11217417
    Abstract: In some embodiments, a self-aligned electrospray device can include a silicon wafer, a fluid reservoir, and a circuit. The silicon wafer can have a layer of electrically insulating material deposited on a top surface and a deposited layer of electrically conducting material. The silicon wafer and the deposited layers can have through holes. The electrically insulating layer may be undercut. The fluid reservoir can be mounted to a bottom surface of the silicon wafer for containing fluid. The circuit can provide an electric potential difference and be coupled between the layer of electrically conducting material and the fluid reservoir.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: January 4, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Melissa A. Smith, Donna-Ruth W. Yost
  • Publication number: 20200395186
    Abstract: In some embodiments, a self-aligned electrospray device can include a silicon wafer, a fluid reservoir, and a circuit. The silicon wafer can have a layer of electrically insulating material deposited on a top surface and a deposited layer of electrically conducting material. The silicon wafer and the deposited layers can have through holes. The electrically insulating layer may be undercut. The fluid reservoir can be mounted to a bottom surface of the silicon wafer for containing fluid. The circuit can provide an electric potential difference and be coupled between the layer of electrically conducting material and the fluid reservoir.
    Type: Application
    Filed: May 12, 2020
    Publication date: December 17, 2020
    Inventors: Melissa A. SMITH, Donna-Ruth W. YOST
  • Patent number: 10418350
    Abstract: A multi-layer semiconductor device includes at least a first semiconductor structure and a second semiconductor structure, each having first and second opposing surfaces. The second semiconductor structure includes a first section and a second section, the second section including a device layer and an insulating layer. The second semiconductor structure also includes one or more conductive structures and one or more interconnect pads. Select ones of the interconnect pads are electrically coupled to select ones of the conductive structures. The multi-layer semiconductor device additionally includes one or more interconnect structures disposed between and coupled to select portions of second surfaces of each of the first and second semiconductor structures. A corresponding method for fabricating a multi-layer semiconductor device is also provided.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: September 17, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Rabindra N. Das, Donna-Ruth W. Yost, Chenson Chen, Keith Warner, Steven A. Vitale, Mark A. Gouker, Craig L. Keast
  • Patent number: 10396269
    Abstract: A multi-layer semiconductor structure includes a first semiconductor structure and a second semiconductor structure, with at least one of the first and second semiconductor structures provided as a superconducting semiconductor structure. The multi-layer semiconductor structure also includes one or more interconnect structures. Each of the interconnect structures is disposed between the first and second semiconductor structures and coupled to respective ones of interconnect pads provided on the first and second semiconductor structures. Additionally, each of the interconnect structures includes a plurality of interconnect sections. At least one of the interconnect sections includes at least one superconducting and/or a partially superconducting material.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: August 27, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: William D. Oliver, Andrew J. Kerman, Rabindra N. Das, Donna-Ruth W. Yost, Danna Rosenberg, Mark A. Gouker
  • Patent number: 10199553
    Abstract: Described are concepts, systems, circuits and techniques related to shielded through via structures and methods for fabricating such shielded through via structures. The described shielded through via structures and techniques allow for assembly of multi-layer semiconductor structures including one or more superconducting semiconductor structures (or integrated circuits).
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: February 5, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: William D. Oliver, Andrew J. Kerman, Rabindra N. Das, Donna-Ruth W. Yost, Danna Rosenberg, Mark A. Gouker
  • Patent number: 10134972
    Abstract: A cryogenic quantum bit package with multiple qubit circuits facilitates inter-qubit signal propagation using a multi-chip module (MCM). Multiple qubits are grouped within the package into one or more qubit integrated circuits (ICs). The qubit ICs themselves are electrically coupled to each other via a structure including a superconducting MCM and superconducting interconnects. Coupling of quantum electrical signals between a qubit and other qubits, a substrate, or the MCM uses a coupler circuit, such as a Josephson junction, capacitor, inductor, or resonator.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 20, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: William D. Oliver, Andrew J. Kerman, Rabindra N. Das, Donna-Ruth W. Yost, Danna Rosenberg, Mark A. Gouker
  • Patent number: 10121754
    Abstract: A method of fabricating an interconnect structure includes providing a semiconductor structure and performing a first spin resist and bake cycle. The first spin resist and bake cycle includes applying a first predetermined amount of a resist material over one or more portions of the semiconductor structure and baking the semiconductor structure to form a first resist layer portion of a resist layer. The method also includes performing a next spin resist and bake cycle. The next spin resist and bake cycle includes applying a next predetermined amount of the resist material and baking the semiconductor structure to form a next resist layer portion of the resist layer. The method additionally includes depositing a conductive material in an opening formed in the resist layer and forming a conductive structure from the conductive material. An interconnect structure is also provided.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 6, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: William D. Oliver, Andrew J. Kerman, Rabindra N. Das, Donna-Ruth W. Yost, Danna Rosenberg, Mark A. Gouker
  • Patent number: 10079224
    Abstract: A semiconductor structure includes at least two substrate layers, each of the at least two substrate layers having first and second opposing surfaces and a plurality of electrical connections extending between the first and second surfaces. The semiconductor structure also includes a substrate joining layer disposed between and coupled to the second surface of a first one of the at least two substrate layers and the first surface of a second one of the at least two substrate layers. The substrate joining layer includes at least one integrated circuit (IC) structure disposed between the first and second surfaces of said substrate joining layer. A corresponding method for fabricating a semiconductor structure is also provided.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: September 18, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Rabindra N. Das, Donna-Ruth W. Yost, Chenson Chen, Keith Warner, Steven A. Vitale, Mark A. Gouker, Craig L. Keast
  • Patent number: 9984943
    Abstract: In a system for aligning at least two semiconductor structures for coupling, an alignment device includes a mounting structure having at least first and second opposing portions. The alignment device also includes a first mounting portion movably coupled to the first portion of the mounting structure, the first mounting portion configured to couple to a first surface of a first semiconductor structure. The alignment device additionally includes a second mounting portion movably coupled to the second portion of the mounting structure, the second mounting portion configured to couple to a second surface of a second semiconductor structure. The alignment device further includes one or more imaging devices disposed above at least one of the first and second mounting portions of the alignment device, the imaging devices configured to capture and/or or detect alignment marks in at least the first semiconductor structure.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 29, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Keith Warner, Richard P. D'Onofrio, Donna-Ruth W. Yost
  • Publication number: 20180012932
    Abstract: A multi-layer semiconductor structure includes a first semiconductor structure and a second semiconductor structure, with at least one of the first and second semiconductor structures provided as a superconducting semiconductor structure. The multi-layer semiconductor structure also includes one or more interconnect structures. Each of the interconnect structures is disposed between the first and second semiconductor structures and coupled to respective ones of interconnect pads provided on the first and second semiconductor structures. Additionally, each of the interconnect structures includes a plurality of interconnect sections. At least one of the interconnect sections includes at least one superconducting and/or a partially superconducting material.
    Type: Application
    Filed: November 3, 2016
    Publication date: January 11, 2018
    Inventors: William D. Oliver, Andrew J. Kerman, Rabindra N. Das, Donna-Ruth W. Yost, Danna Rosenberg, Mark A. Gouker
  • Publication number: 20180013052
    Abstract: Quantum bit (qubit) circuits, coupler circuit structures and coupling techniques are described. Such circuits and techniques may be used to provide multi-qubit circuits suitable for use in multichip modules (MCMs).
    Type: Application
    Filed: November 3, 2016
    Publication date: January 11, 2018
    Inventors: William D. Oliver, Andrew J. Kerman, Rabindra N. Das, Donna-Ruth W. Yost, Danna Rosenberg, Mark A. Gouker
  • Publication number: 20170330805
    Abstract: In a system for aligning at least two semiconductor structures for coupling, an alignment device includes a mounting structure having at least first and second opposing portions. The alignment device also includes a first mounting portion movably coupled to the first portion of the mounting structure, the first mounting portion configured to couple to a first surface of a first semiconductor structure. The alignment device additionally includes a second mounting portion movably coupled to the second portion of the mounting structure, the second mounting portion configured to couple to a second surface of a second semiconductor structure. The alignment device further includes one or more imaging devices disposed above at least one of the first and second mounting portions of the alignment device, the imaging devices configured to capture and/or or detect alignment marks in at least the first semiconductor structure.
    Type: Application
    Filed: December 22, 2016
    Publication date: November 16, 2017
    Inventors: Keith Warner, Richard P. D'Onofrio, Donna-Ruth W. Yost
  • Patent number: 9780075
    Abstract: A multi-layer semiconductor device includes at least two semiconductor structures, each of the at least two semiconductor structures having first and second opposing surfaces and including a first section and a second section. The second section includes a device layer and an insulating layer. The multi-layer semiconductor device also includes one or more conductive structures and one or more interconnect pads. Select ones of the one or more interconnect pads are electrically coupled to the one or more conductive structures. The multi-layer semiconductor device additionally includes a via joining layer disposed between and coupled to second surfaces of each of the at least two semiconductor structures. A corresponding method for fabricating a multi-layer semiconductor device is also provided.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: October 3, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Rabindra N. Das, Donna-Ruth W. Yost, Chenson Chen, Keith Warner, Steven A. Vitale, Mark A. Gouker, Craig L. Keast
  • Publication number: 20170200700
    Abstract: A multi-layer semiconductor device includes at least two semiconductor structures, each of the at least two semiconductor structures having first and second opposing surfaces and including a first section and a second section. The second section includes a device layer and an insulating layer. The multi-layer semiconductor device also includes one or more conductive structures and one or more interconnect pads. Select ones of the one or more interconnect pads are electrically coupled to the one or more conductive structures. The multi-layer semiconductor device additionally includes a via joining layer disposed between and coupled to second surfaces of each of the at least two semiconductor structures. A corresponding method for fabricating a multi-layer semiconductor device is also provided.
    Type: Application
    Filed: August 11, 2015
    Publication date: July 13, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Rabindra N. Das, Donna-Ruth W. Yost, Chenson Chen, Keith Warner, Steven A. Vitale, Mark A. Gouker, Craig L. Keast
  • Publication number: 20170162550
    Abstract: A semiconductor structure includes at least two substrate layers, each of the at least two substrate layers having first and second opposing surfaces and a plurality of electrical connections extending between the first and second surfaces. The semiconductor structure also includes a substrate joining layer disposed between and coupled to the second surface of a first one of the at least two substrate layers and the first surface of a second one of the at least two substrate layers. The substrate joining layer includes at least one integrated circuit (IC) structure disposed between the first and second surfaces of said substrate joining layer. A corres ponding method for fabricating a semiconductor structure is also provided.
    Type: Application
    Filed: August 11, 2015
    Publication date: June 8, 2017
    Inventors: Rabindra N. Das, Donna-Ruth W. Yost, Chenson Chen, Keith Warner, Steven A. Vitale, Mark A. Gouker, Craig L. Keast
  • Publication number: 20170162507
    Abstract: A multi-layer semiconductor device includes at least a first semiconductor structure and a second semiconductor structure, each having first and second opposing surfaces. The second semiconductor structure includes a first section and a second section, the second section including a device layer and an insulating layer. The second semiconductor structure also includes one or more conductive structures and one or more interconnect pads. Select ones of the interconnect pads are electrically coupled to select ones of the conductive structures. The multi-layer semiconductor device additionally includes one or more interconnect structures disposed between and coupled to select portions of second surfaces of each of the first and second semiconductor structures. A corresponding method for fabricating a multi-layer semiconductor device is also provided.
    Type: Application
    Filed: August 11, 2015
    Publication date: June 8, 2017
    Inventors: Rabindra N. Das, Donna-Ruth W. Yost, Chenson Chen, Keith Warner, Steven A. Vitale, Mark A. Gouker, Craig L. Keast
  • Publication number: 20170133336
    Abstract: A method of fabricating an interconnect structure includes providing a semiconductor structure and performing a first spin resist and bake cycle. The first spin resist and bake cycle includes applying a first predetermined amount of a resist material over one or more portions of the semiconductor structure and baking the semiconductor structure to form a first resist layer portion of a resist layer. The method also includes performing a next spin resist and bake cycle. The next spin resist and bake cycle includes applying a next predetermined amount of the resist material and baking the semiconductor structure to form a next resist layer portion of the resist layer. The method additionally includes depositing a conductive material in an opening formed in the resist layer and forming a conductive structure from the conductive material. An interconnect structure is also provided.
    Type: Application
    Filed: November 3, 2016
    Publication date: May 11, 2017
    Inventors: William D. Oliver, Andrew J. Kerman, Rabindra N. Das, Donna-Ruth W. Yost, Danna Rosenberg, Mark A. Gouker