Patents by Inventor Donna Zupanski-Nielsen

Donna Zupanski-Nielsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070290345
    Abstract: An electrical structure and method comprising a first substrate electrically and mechanically connected to a second substrate. The first substrate comprises a first electrically conductive pad and a second electrically conductive pad. The second substrate comprises a third electrically conductive pad, a fourth electrically conductive pad, and a first electrically conductive member. The fourth electrically conductive pad comprises a height that is different than a height of the first electrically conductive member. The electrically conductive member is electrically and mechanically connected to the fourth electrically conductive pad. A first solder ball connects the first electrically conductive pad to the third electrically conductive pad. The first solder ball comprises a first diameter. A second solder ball connects the second electrically conductive pad to the first electrically conductive member. The second solder ball comprises a second diameter. The first diameter is greater than said second diameter.
    Type: Application
    Filed: August 30, 2007
    Publication date: December 20, 2007
    Inventors: Lawrence Clevenger, Mukta Farooq, Louis Hsu, William Landers, Donna Zupanski-Nielsen, Carl Radens, Chih-Chao Yang
  • Publication number: 20070187828
    Abstract: An integrated circuit (IC) chip and related package are disclosed including a first interlevel dielectric (ILD) layer(s) including an ultra low dielectric constant (ULK) material, a second ILD layer(s) including a silicon dioxide (SiO2) based dielectric material above the first ILD layer(s), and a transitional ILD layer including an intermediate dielectric constant material. The transitional ILD layer is positioned directly below a lowermost one of the second ILD layer(s), excepting any isolation layer, which represents the layer most susceptible to failure. The intermediate dielectric constant material can have a dielectric constant and an elastic modulus greater than that of the ULK material and less than that of the SiO2 based dielectric material. Hence, the intermediate dielectric constant provides adequate electrical properties, but also absorbs more of the stress than the typical ULK material, which reduces the likelihood of failure. A method of forming the IC chip is also disclosed.
    Type: Application
    Filed: February 14, 2006
    Publication date: August 16, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta Farooq, Robert Hannon, Ian Melville, Donna Zupanski-Nielsen
  • Publication number: 20070080455
    Abstract: A semiconductor having an insulating layer, a contact pad, a via, and a sacrificial dielectric cap is provided. The contact pad is embedded in the insulating layer, where the contact pad has a top metal layer of copper. The via creates an opening over the top metal layer. The sacrificial dielectric cap is over at least the top metal layer.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 12, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donna Zupanski-Nielsen, William Landers, Ian Melville, Roger Quon, Timothy Daubenspeck, Kamalesh Srivastava, Mary Cullinan-Scholl, Lawrence Clevenger, Christopher Muzzy
  • Publication number: 20070007665
    Abstract: An electrical structure and method comprising a first substrate electrically and mechanically connected to a second substrate. The first substrate comprises a first electrically conductive pad and a second electrically conductive pad. The second substrate comprises a third electrically conductive pad, a fourth electrically conductive pad, and a first electrically conductive member. The fourth electrically conductive pad comprises a height that is different than a height of the first electrically conductive member. The electrically conductive member is electrically and mechanically connected to the fourth electrically conductive pad. A first solder ball connects the first electrically conductive pad to the third electrically conductive pad. The first solder ball comprises a first diameter. A second solder ball connects the second electrically conductive pad to the first electrically conductive member. The second solder ball comprises a second diameter. The first diameter is greater than said second diameter.
    Type: Application
    Filed: July 5, 2005
    Publication date: January 11, 2007
    Applicant: INTERANTIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence Clevenger, Mukta Farooq, Louis Hsu, William Landers, Donna Zupanski-Nielsen, Carl Radens, Chih-Chao Yang
  • Publication number: 20050224966
    Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 13, 2005
    Inventors: Keith Fogel, Balaram Ghosal, Sung Kang, Stephen Kilpatrick, Paul Lauro, Henry Nye, Da-Yuan Shih, Donna Zupanski-Nielsen
  • Publication number: 20050026450
    Abstract: A method is provided for removing exposed seed layers in the fabrication of solder interconnects on electronic components such as semiconductor wafers without damaging the interconnects or underlying wafer substrate and with a high wafer yield. The solder interconnects are lead free or substantially lead free and typically contain Sn. An oxalic acid solution is used to contact the wafer after an etching step to remove part of the seed layer. The seed layer is typically a Cu containing layer with a lower barrier layer containing barrier metals such as Ti, Ta and W. The lower barrier layer remains after the etch and the oxalic acid solution inhibits the formation of Sn compounds on the barrier layer surface which compounds may mask the barrier layer and the barrier layer etchant resulting in incomplete barrier layer removal on the wafer surface. Any residual conductive barrier layer can cause shorts and other wafer problems and result in a lower wafer yield.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 3, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emanuel Cooper, John Cotte, Lisa Fanti, David Eichstadt, Stephen Kilpatrick, Henry Nye, Donna Zupanski-Nielsen