Patents by Inventor Donny Young

Donny Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130256125
    Abstract: Substrate processing systems are provided herein. In some embodiments, a substrate processing system may include a target assembly having a target comprising a source material to be deposited on a substrate; a grounding assembly disposed about the target assembly and having a first surface that is generally parallel to and opposite a backside of the target assembly; a support member coupled to the grounding assembly to support the target assembly within the grounding assembly; one or more insulators disposed between the backside of the target assembly and the first surface of the grounding assembly; and one or more biasing elements disposed between the first surface of the grounding assembly and the backside of the target assembly to bias the target assembly toward the support member.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DONNY YOUNG, ALAN RITCHIE, UDAY PAI, MUHAMMAD RASHEED, KEITH A. MILLER
  • Publication number: 20130256127
    Abstract: A processing system may include a target having a central axis normal thereto; a source distribution plate having a target facing side opposing a backside of the target, wherein the source distribution plate includes a plurality of first features such that a first distance of a first radial RF distribution path along a given first diameter is about equal to a second distance of an opposing second radial RF distribution path along the given first diameter; and a ground plate opposing a target opposing side of the source distribution plate and having a plurality of second features disposed about the central axis and corresponding to the plurality of first features, wherein a third distance of a first radial RF return path along a given second diameter is about equal to a fourth distance of an opposing second radial RF return path along the given second diameter.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DONNY YOUNG, ALAN RITCHIE, MUHAMMAD RASHEED, KEITH A. MILLER
  • Publication number: 20130256128
    Abstract: Apparatus for processing substrates are provided herein. In some embodiments, an apparatus includes a process kit comprising a shield having one or more sidewalls configured to surround a first volume, the first volume disposed within an inner volume of a process chamber; and a first ring moveable between a first position, wherein the first ring rests on the shield, and a second position, wherein a gap is formed between an outer surface of the first ring and an inner surface of the one or more sidewalls, wherein a width of the gap is less than about two plasma sheath widths for a plasma formed at a frequency of about 40 MHz or higher and at a pressure of about 140 mTorr or lower.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ALAN RITCHIE, DONNY YOUNG
  • Publication number: 20130255576
    Abstract: Apparatus for processing substrates is disclosed herein. In some embodiments, an apparatus includes a first shield having a first end, a second end, and one or more first sidewalls disposed between the first and second ends, wherein the first end is configured to interface with a first support member of a process chamber to support the first shield in a position such that the one or more first sidewalls surround a first volume of the process chamber; and a second shield having a first end, a second end, and one or more second sidewalls disposed between the first and second ends of the second shield and about the first shield, wherein the first end of the second shield is configured to interface with a second support member of the process chamber to support the second shield such that the second shield contacts the first shield to form a seal therebetween.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MUHAMMAD RASHEED, DONNY YOUNG, KIRANKUMAR SAVANDAIAH, UDAY PAI
  • Publication number: 20130256126
    Abstract: Apparatus for processing substrates are provided herein. In some embodiments, an apparatus for processing a substrate includes a substrate support that may include a dielectric member having a surface to support a substrate thereon; one or more first conductive members disposed below the dielectric member and having a dielectric member facing surface adjacent to the dielectric member; and a second conductive member disposed about and contacting the one or more first conductive members such that RF energy provided to the substrate by an RF source returns to the RF source by traveling radially outward from the substrate support along the dielectric member facing surface of the one or more first conductive members and along a first surface of the second conductive member disposed substantially parallel to a peripheral edge surface of the one or more first conductive members after travelling along the dielectric layer facing surface.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ALAN RITCHIE, DONNY YOUNG, WEI W. WANG, ANANTHKRISHNA JUPUDI, THANH X. NGUYEN, KIRANKUMAR SAVANDAIAH
  • Publication number: 20130153412
    Abstract: In some embodiments, substrate processing apparatus may include a chamber body; a lid disposed atop the chamber body; a target assembly coupled to the lid, the target assembly including a target of material to be deposited on a substrate; an annular dark space shield having an inner wall disposed about an outer edge of the target; a seal ring disposed adjacent to an outer edge of the dark space shield; and a support member coupled to the lid proximate an outer end of the support member and extending radially inward such that the support member supports the seal ring and the annular dark space shield, wherein the support member provides sufficient compression when coupled to the lid such that a seal is formed between the support member and the seal ring and the seal ring and the target assembly.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ALAN RITCHIE, DONNY YOUNG, KEITH A. MILLER, MUHAMMAD RASHEED, STEVE SANSONI, Uday Pai
  • Publication number: 20120205241
    Abstract: Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a cover ring, a shield, and an isolator for use in a physical deposition chamber. The components of the process kit work alone and in combination to significantly reduce particle generation and stray plasmas. In comparison with existing multiple part shields, which provide an extended RF return path contributing to RF harmonics causing stray plasma outside the process cavity, the components of the process kit reduce the RF return path thus providing improved plasma containment in the interior processing region.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Donny Young, Lara Hawrylchak
  • Publication number: 20110240464
    Abstract: In some embodiments, a feed structure to couple RF energy to a target may include a body having a first end to receive RF energy and a second end opposite the first end to couple the RF energy to a target, the body further having a central opening disposed through the body from the first end to the second end; a first member coupled to the body at the first end, wherein the first member comprises a first element circumscribing the body and extending radially outward from the body, and one or more terminals disposed in the first member to receive RF energy from an RF power source; and a source distribution plate coupled to the second end of the body to distribute the RF energy to the target, wherein the source distribution plate includes a hole disposed through the plate and aligned with the central opening of the body.
    Type: Application
    Filed: March 15, 2011
    Publication date: October 6, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MUHAMMAD RASHEED, LARA HAWRYLCHAK, MICHAEL S. COX, DONNY YOUNG, KIRANKUMAR SAVANDAIAH, ALAN RITCHIE
  • Publication number: 20110209995
    Abstract: Apparatus and methods for performing plasma processing on a wafer supported on a pedestal are provided. The apparatus can include a pedestal on which the wafer can be supported, a variable capacitor having a variable capacitance, a motor attached to the variable capacitor which varies the capacitance of the variable capacitor, a motor controller connected to the motor that causes the motor to rotate, and an output from the variable capacitor connected to the pedestal. A desired state of the variable capacitor is associated with a process recipe in a process controller. When the process recipe is executed the variable capacitor is placed in the desired state.
    Type: Application
    Filed: June 25, 2010
    Publication date: September 1, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Muhammad M. Rasheed, Ronald D. DeDore, Michael S. Cox, Keith A. Miller, Donny Young, John C. Forster, Adolph M. Allen, Lara Hawrylchak
  • Publication number: 20100252417
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 7, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Adolph Miller Allen, Lara Hawrylchak, Zhigang Xie, Muhammad M. Rasheed, Rongjun Wang, Xianmin Tang, Zhendong Liu, Tza-Jing Gung, Srinivas Gandikota, Mei Chang, Michael S. Cox, Donny Young, Kirankumar Savandaiah, Zhenbin Ge
  • Patent number: 7674360
    Abstract: A lift mechanism for and a corresponding use of a magnetron in a plasma sputter reactor. A magnetron rotating about the target axis is controllably lifted away from the back of the target to compensate for sputter erosion, thereby maintaining a constant magnetic field and resultant plasma density at the sputtered surface, which is particularly important for stable operation with a small magnetron, for example, one executing circular or planetary motion about the target axis. The lift mechanism can include a lead screw axially fixed to the magnetron support shaft and a lead nut engaged therewith to raise the magnetron as the lead nut is turned. Alternatively, the support shaft is axially fixed to a vertically moving slider. The amount of lift may be controlled according a recipe based on accumulated power applied to the target or by monitoring electrical characteristics of the target.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ilyoung Richard Hong, Donny Young, Michael Rosenstein, Robert B. Lowrance, Daniel C. Lubben, Michael Andrew Miller, Peijun Ding, Sreekrishnan Sankaranarayan, Goichi Yoshidome
  • Publication number: 20090272647
    Abstract: Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a cover ring, a shield, and an isolator for use in a physical deposition chamber. The components of the process kit work alone and in combination to significantly reduce particle generation and stray plasmas. In comparison with existing multiple part shields, which provide an extended RF return path contributing to RF harmonics causing stray plasma outside the process cavity, the components of the process kit reduce the RF return path thus providing improved plasma containment in the interior processing region.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 5, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Donny Young, Lara Hawrylchak
  • Patent number: 7561015
    Abstract: A magnet encapsulated within a canister formed from two cans into a laminated structure particularly useful in plasma processing reactors. Each can includes an end wall and a cylindrical sidewall. One can additionally includes an annular lip that slidably fits outside the sidewall of the other can with a small gap therebetween. The magnet is inserted into the two cans together with a flowable and curable adhesive such as epoxy. The cans are slid together and compressed to cause the adhesive to flow between the magnet and the two cans and between the lip of one can and the sidewall of the other. The adhesive is cured to bond the magnet to the cans and to bond the cans together and to also hermetically seal the structure. The cans may be deep drawn from non-magnetic stainless steel with wall thicknesses of less than 0.064 mm.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: July 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Anthony Vesci, Alan B. Liu, Donny Young, Joe F. Sommers, Kevin Hughes
  • Publication number: 20070170052
    Abstract: A sputtering chamber has a sputtering target comprising a backing plate and a sputtering plate. The backing plate has a groove. The sputtering plate comprises a cylindrical mesa having a plane, and an annular inclined rim surrounding the cylindrical mesa. In one version, the backing plate comprises a material having a high thermal conductivity and a low electrical resistivity. In another version, the backing plate comprises a backside surface with a single groove or a plurality of grooves.
    Type: Application
    Filed: November 12, 2006
    Publication date: July 26, 2007
    Inventors: Alan Ritchie, Donny Young, Ilyoung (Richard) Hong, Kathleen Scheible, Umesh Kelkar
  • Publication number: 20070173059
    Abstract: A process kit for a sputtering chamber comprises a deposition ring, cover ring, and a shield assembly, for placement about a substrate support in a sputtering chamber. The deposition ring comprising an annular band with an inner lip extending transversely, a raised ridge substantially parallel to the substrate support, an inner open channel, and a ledge radially outward of the raised ridge. A cover ring at least partially covers the deposition ring, the cover ring comprising an annular plate comprising a footing which rests on a surface about the substrate support, and downwardly extending first and second cylindrical walls.
    Type: Application
    Filed: November 12, 2006
    Publication date: July 26, 2007
    Inventors: Donny Young, Alan Ritchie, Ilyoung (Richard) Hong, Kathleen Scheible
  • Publication number: 20070125646
    Abstract: A sputtering target for a sputtering chamber comprises a backing plate and titanium sputtering plate mounted on the backing plate. The sputtering plate comprises a central cylindrical mesa having a plane, and a peripheral inclined annular rim surrounding the cylindrical mesa, the annular rim being inclined relative to the plane of the cylindrical mesa by an angle of at least about 8°.
    Type: Application
    Filed: November 12, 2006
    Publication date: June 7, 2007
    Inventors: Donny Young, Alan Ritchie, Ilyoung Hong, Kathleen Scheible
  • Publication number: 20050133365
    Abstract: A lift mechanism for and a corresponding use of a magnetron in a plasma sputter reactor. A magnetron rotating about the target axis is controllably lifted away from the back of the target to compensate for sputter erosion, thereby maintaining a constant magnetic field and resultant plasma density at the sputtered surface, which is particularly important for stable operation with a small magnetron, for example, one executing circular or planetary motion about the target axis. The lift mechanism can include a lead screw axially fixed to the magnetron support shaft and a lead nut engaged therewith to raise the magnetron as the lead nut is turned. Alternatively, the support shaft is axially fixed to a vertically moving slider. The amount of lift may be controlled according a recipe based on accumulated power applied to the target or by monitoring electrical characteristics of the target.
    Type: Application
    Filed: September 16, 2004
    Publication date: June 23, 2005
    Inventors: Ilyoung Hong, Donny Young, Michael Rosenstein, Robert Lowrance, Daniel Lubben, Michael Miller, Peijun Ding, Sreekrishnan Sankaranarayan, Goichi Yoshidome
  • Publication number: 20050116392
    Abstract: A magnet encapsulated within a canister formed from two cans into a laminated structure particularly useful in plasma processing reactors. Each can includes an end wall and a cylindrical sidewall. One can additionally includes an annular lip that slidably fits outside the sidewall of the other can with a small gap therebetween. The magnet is inserted into the two cans togther with a flowable and curable adhesive such as epoxy. The cans are slid together and compressed to cause the adhesive to flow between the magnet and the two cans and between the lip of one can and the sidewall of the other. The adhesive is cured to bond the magnet to the cans and to bond the cans together and to also hermetically seal the structure. The cans may be deep drawn from non-magnetic stainless steel with wall thicknesses of less than 0.064 mm.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 2, 2005
    Inventors: Anthony Vesci, Alan Liu, Donny Young, Joe Sommers, Kevin Hughes
  • Patent number: 6875927
    Abstract: A high temperature cable includes wire bundle having a plurality of copper strands, where each copper strand has a barrier coating and an anti-oxidation coating disposed thereon. A mica-based layer is wrapped around a length of the wire bundle and a fiberglass layer is disposed over the mica-based layer.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: April 5, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Karl Brown, Cheng-Hsiung (Matt) Tsai, Donny Young, Vineet Mehta, David Loo
  • Publication number: 20030169553
    Abstract: A high temperature cable includes wire bundle having a plurality of copper strands, where each copper strand has a barrier coating and an anti-oxidation coating disposed thereon. A mica-based layer is wrapped around a length of the wire bundle and a fiberglass layer is disposed over the mica-based layer.
    Type: Application
    Filed: March 8, 2002
    Publication date: September 11, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Karl Brown, Cheng-Hsiung Matt Tsai, Donny Young, Vineet Mehta, David Loo