Patents by Inventor Donwon Park

Donwon Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6111264
    Abstract: A method for fabricating an ultra-small pore or contact for use in chalcogenide memory cells specifically and in semiconductor devices generally in which disposable spacers are utilized to fabricate ultra-small pores or contacts. The pores thus defined have minimum lateral dimensions ranging from approximately 500 to 4000 Angstroms. The pores thus defined may then be used to fabricate a chalcogenide memory cell or other semiconductor devices.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: August 29, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Graham R. Wolstenholme, Steven T. Harshfield, Raymond A. Turi, Fernando Gonzalez, Guy T. Blalock, Donwon Park
  • Patent number: 5814527
    Abstract: A method for fabricating an ultra-small pore or contact for use in chalcogenide memory cells specifically and in semiconductor devices generally in which disposable spacers are utilized to fabricate ultra-small pores or contacts. The pores thus defined have minimum lateral dimensions ranging from approximately 500 to 4000 Angstroms. The pores thus defined may then be used to fabricate a chalcogenide memory cell or other semiconductor devices.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: September 29, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Graham R. Wolstenholme, Steven T. Harshfield, Raymond A. Turi, Fernando Gonzalez, Guy T. Blalock, Donwon Park
  • Patent number: 5258096
    Abstract: The present invention introduces the use of "local" etch stop layers having highly selective etch characteristics vis-a-vis insulating layers into which the contact/vias are etched. Any kind of conducting material which possesses etch selectivity to an insulator such as oxide (i.e. doped polysilicon, tungsten, tungsten silicide, titanium, titanium silicide, titanium nitride and the like) may be used and the process flow described herein uses conductively doped polysilicon as an example to accomplish this task without the need to add any extra photo or mask step to a conventional dynamic random access memory (DRAM) process flow and with the addition of a minimal number of deposition and etch steps. During a first masking step to open a contact, a subsequent etch opens up the P-channel gate area to thin down the underlying oxide. Polysilicon is then deposited which is followed by formation of an oxide.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: November 2, 1993
    Assignee: Micron Semiconductor, Inc.
    Inventors: Gurtej S. Sandhu, Donwon Park, Tyler A. Lowrey