Patents by Inventor Dora Paolucci

Dora Paolucci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070189687
    Abstract: A curable coating composition that may be converted to a cured coating for an optical fiber during a continuous fiber coating process. The curable coating composition comprises an organohydrogenpolysiloxane, an alkenyl functional polysiloxane, and an ultraviolet radiation absorbing hydrosilation photocatalyst in an amount for crosslink formation between the organohydrogenpolysiloxane and the alkenyl functional polysiloxane. The curable coating composition crosslinks under the influence of ultraviolet radiation to provide a cured coating having a high level of transparency to ultraviolet radiation. Application of heat to the curable coating composition accelerates the rate of cured coating formation. The high level of transparency of the cured coating allows from about 70% to about 99% of radiation of wavelengths from about 240 nm to about 275 nm to pass through the coating for writing a refractive index grating to produce an optical fiber Bragg grating .
    Type: Application
    Filed: November 22, 2006
    Publication date: August 16, 2007
    Inventors: Christopher Walker, Larry Boardman, Dora Paolucci
  • Publication number: 20070140907
    Abstract: A method of making an optochemical sensor, the method comprising: providing a reflective substrate having a major surface; affixing a detection layer comprising at least one intrinsically microporous polymer to at least a portion of the major surface; depositing a substantially continuous semi-reflective metallic layer on at least a portion of the detection layer, the semi-reflective metallic layer comprising palladium and having a network of fine irregular cracks therein; and heating the detection layer and semi-reflective metallic layer in the presence of molecular oxygen at a temperature sufficient to cause the cracks to widen. Sensors prepared according to method are also disclosed.
    Type: Application
    Filed: December 21, 2005
    Publication date: June 21, 2007
    Inventors: Neal Rakow, Michael Wendland, Michael Palazzotto, Dora Paolucci, Richard Poirier, Stefan Gryska, John Trend, Moses David
  • Publication number: 20070141580
    Abstract: Plasma deposited microporous analyte detection layers, method of forming analyte detection layers, and analyte sensors including the same are disclosed. An analyte sensor includes a substrate and a microporous amorphous random covalent network layer. The microporous amorphous random covalent network layer includes silicon, carbon, hydrogen and oxygen with a mean pore size in a range from 0.5 to 10 nanometers and an optical thickness in a range from 0.2 to 2 micrometers.
    Type: Application
    Filed: December 21, 2005
    Publication date: June 21, 2007
    Inventors: Moses David, Neal Rakow, Dora Paolucci, John Trend
  • Publication number: 20060269202
    Abstract: Disclosed herein is a coated optical fiber comprising: a siliceous optical fiber including a core inside a cladding; and a cured coating comprising: a thermally cured polyorganosilsesquioxane; and an oxide powder dispersed in said cured polyorganosilsesquioxane, wherein said oxide powder has a refractive index from about 1.2 to about 2.7 and includes a plurality of particles having a particle size less than about 100 nanometers, said cured coating having adhesion to said siliceous optical fiber and further having transparency to ultraviolet radiation. Also disclosed herein is a fiber optic device comprising the optical fiber.
    Type: Application
    Filed: July 7, 2006
    Publication date: November 30, 2006
    Inventors: Christopher Walker, D. Thompson, Dora Paolucci, John Brady
  • Publication number: 20050154079
    Abstract: A curable coating composition that may be converted to a cured coating for an optical fiber during a continuous fiber coating process. The curable coating composition comprises an organohydrogenpolysiloxane, an alkenyl functional polysiloxane, and an ultraviolet radiation absorbing hydrosilation photocatalyst in an amount for crosslink formation between the organohydrogenpolysiloxane and the alkenyl functional polysiloxane. The curable coating composition crosslinks under the influence of ultraviolet radiation to provide a cured coating having a high level of transparency to ultraviolet radiation. Application of heat to the curable coating composition accelerates the rate of cured coating formation. The high level of transparency of the cured coating allows from about 70% to about 99% of radiation of wavelengths from about 240 nm to about 275 nm to pass through the coating for writing a refractive index grating to produce an optical fiber Bragg grating.
    Type: Application
    Filed: December 9, 2004
    Publication date: July 14, 2005
    Inventors: Christopher Walker, Dora Paolucci