Patents by Inventor Doron Burshtain

Doron Burshtain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9368984
    Abstract: A system and method for fast charging of a lithium-ion battery, including: continuously monitoring a state of charge (SOC) of the lithium-ion battery; during a normal mode of operation and upon detecting that the battery is at the predetermined low charge level, discontinuing the discharge; upon detecting that the battery is connected to a charger, providing charging rate of at least 4 C for at least part of charging; and upon detecting that the battery, while connected to the charger is at the predetermined high charge level, discontinue the charging, wherein the predetermined low charge level and the predetermined high charge level define a consumable capacity of the battery, wherein the consumable capacity is below 50% of the full capacity of the battery.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: June 14, 2016
    Assignee: StoreDot Ltd.
    Inventors: Daniel Aronov, Leonid Krasovitsky, Doron Burshtain
  • Publication number: 20160141612
    Abstract: An anode material for a lithium ion device includes an active material including germanium and boron. The weight percentage of the germanium is between about 45 to 80 weight % of the total weight of the anode material and the weight percentage of the boron is between about 2 to 20 weight % of the total weight of the anode material. The active material may include carbon at a weight percentage of between 0.5 to about 5 weight % of the total weight of the anode material. Additional materials, methods of making and devices are taught.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 19, 2016
    Inventors: Doron BURSHTAIN, Ronny COSTI, Carmit OPHIR, Daniel ARONOV
  • Publication number: 20160133919
    Abstract: Methods for manufacturing multi-functional electrode (MFE) devices for fast-charging of energy-storage devices are provided. The method includes assembling first MFE structure for forming a suitable electrochemical half-couple, the first MFE structure having a first fast-charging component (FCC) and a first MFE assembly and a counter-electrode structure for forming a complementary electrochemical half-couple and supplying an internal voltage controller (IVC) for applying a bias potential to the first MFE structure and/or the counter-electrode structure, the bias potential is set in accordance with the first MFE structure and said counter-electrode structure. The IVC is configured to regulate an intra-electrode potential gradient between the first FCC and the first MFE assembly to control a charge rate from the first FCC to the first MFE assembly.
    Type: Application
    Filed: December 28, 2015
    Publication date: May 12, 2016
    Inventors: Daniel ARONOV, Liron AMIR, Doron BURSHTAIN, Olga GUCHOK, Leonid KRASOVITSKY
  • Publication number: 20160036255
    Abstract: A system and method for fast charging of a lithium-ion battery, including: continuously monitoring a state of charge (SOC) of the lithium-ion battery; during a normal mode of operation and upon detecting that the battery is at the predetermined low charge level, discontinuing the discharge; upon detecting that the battery is connected to a charger, providing charging rate of at least 4C for at least part of charging; and upon detecting that the battery, while connected to the charger is at the predetermined high charge level, discontinue the charging, wherein the predetermined low charge level and the predetermined high charge level define a consumable capacity of the battery, wherein the consumable capacity is below 50% of the full capacity of the battery.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 4, 2016
    Inventors: Daniel ARONOV, Leonid KRASOVITSKY, Doron BURSHTAIN
  • Publication number: 20160036045
    Abstract: An anode material for a lithium ion device includes an active material including silicon and boron. The weight percentage of the silicon is between about 4 to 35 weight % of the total weight of the anode material and the weight percentage of the boron is between about 2 to 20 weight % of the total weight of the anode material. The active material may include carbon at a weight percentage of between between 5 to about 60 weight % of the total weight of the anode material. Additional materials, methods of making and devices are taught.
    Type: Application
    Filed: July 30, 2015
    Publication date: February 4, 2016
    Inventors: Doron BURSHTAIN, Liron AMIR, Daniel ARONOV, Olga GUCHOK, Leonid KRASOVITSKY
  • Patent number: 9225187
    Abstract: The present invention discloses multi-functional electrode (MFE) devices for fast-charging of energy-storage devices. MFE devices include: a multi-functional electrode (MFE) device for fast-charging of energy-storage devices, the device including: a first MFE structure for forming a suitable electrochemical half-couple, the first MFE structure having a first fast-charging component (FCC) and a first MFE assembly; a counter-electrode structure for forming a complementary electrochemical half-couple to the first MFE structure; and an internal voltage controller (IVC) for applying a bias potential to the first MFE structure and/or the counter-electrode structure, whereby the bias potential is set in accordance with the chemical nature of the first MFE structure and the counter-electrode structure. Preferably, the IVC is configured to regulate an intra-electrode potential gradient between the first FCC and the first MFE assembly, thereby controlling a charge rate from the first FCC to the first MFE assembly.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: December 29, 2015
    Assignee: StoreDot Ltd.
    Inventors: Daniel Aronov, Liron Amir, Doron Burshtain, Olga Guchok, Leonid Krasovitsky
  • Publication number: 20150333551
    Abstract: The present invention discloses multi-functional electrode (MFE) devices for fast-charging of energy-storage devices. MFE devices include: a multi-functional electrode (MFE) device for fast-charging of energy-storage devices, the device including: a first MFE structure for forming a suitable electrochemical half-couple, the first MFE structure having a first fast-charging component (FCC) and a first MFE assembly; a counter-electrode structure for forming a complementary electrochemical half-couple to the first MFE structure; and an internal voltage controller (IVC) for applying a bias potential to the first MFE structure and/or the counter-electrode structure, whereby the bias potential is set in accordance with the chemical nature of the first MFE structure and the counter-electrode structure. Preferably, the IVC is configured to regulate an intra-electrode potential gradient between the first FCC and the first MFE assembly, thereby controlling a charge rate from the first FCC to the first MFE assembly.
    Type: Application
    Filed: May 8, 2015
    Publication date: November 19, 2015
    Inventors: Daniel Aronov, Liron Amir, Doron Burshtain, Olga Guchok, Leonid Krasovitsky