Patents by Inventor Doron Greenberg

Doron Greenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170271676
    Abstract: A cobalt-containing phosphate material can comprise lithium (Li) (or, alternatively or additionally other alkali metal(s)), cobalt (Co), phosphate (PO4), and at least two additional metals other than Li and Co (e.g., as dopants and/or metal oxides), and can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) of at least 0.2, at least 0.3, at least 0.5, at least 0.7, or at least about 0.75. The cobalt-containing phosphate material can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) ranging from 0.2 to 0.98, from 0.3 to 0.98, from 0.3 to 0.94, from 0.5 to 0.98, from 0.5 to 0.94, or alternatively from 0.5 to 0.9, from 0.7 to 0.9, or from 0.75 to 0.85.
    Type: Application
    Filed: April 4, 2017
    Publication date: September 21, 2017
    Inventors: Bin Li, Steven Kaye, Doron Greenberg, Conor Riley, Jingning Shan, Jen-Hsien Yang
  • Publication number: 20160079599
    Abstract: A cobalt-containing phosphate material can comprise lithium (Li) (or, alternatively or additionally other alkali metal(s)), cobalt (Co), phosphate (PO4), and at least two additional metals other than Li and Co (e.g., as dopants and/or metal oxides), and can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) of at least 0.2, at least 0.3, at least 0.5, at least 0.7, or at least about 0.75. The cobalt-containing phosphate material can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) ranging from 0.2 to 0.98, from 0.3 to 0.98, from 0.3 to 0.94, from 0.5 to 0.98, from 0.5 to 0.94, or alternatively from 0.5 to 0.9, from 0.7 to 0.9, or from 0.75 to 0.85.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 17, 2016
    Inventors: Bin Li, Steven Kaye, Doron Greenberg, Conor Riley, Jingning Shan, Jen-Hsien Yang
  • Patent number: 9160001
    Abstract: A cobalt-containing phosphate material can comprise lithium (Li) (or, alternatively or additionally other alkali metal(s)), cobalt (Co), phosphate (PO4), and at least two additional metals other than Li and Co (e.g., as dopants and/or metal oxides), and can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) of at least 0.2, at least 0.3, at least 0.5, at least 0.7, or at least about 0.75. The cobalt-containing phosphate material can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) ranging from 0.2 to 0.98, from 0.3 to 0.98, from 0.3 to 0.94, from 0.5 to 0.98, from 0.5 to 0.94, or alternatively from 0.5 to 0.9, from 0.7 to 0.9, or from 0.75 to 0.85.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: October 13, 2015
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Bin Li, Steven Kaye, Doron Greenberg, Conor Riley, Jingning Shan, Jen-Hsien Yang
  • Publication number: 20130202804
    Abstract: A method for preparing stable dispersions of high strength polymers where the polymer particles are micron-sized or submicron-sized and dispersions and dry powders prepared from this method. The method includes swelling the high strength polymer particles and mechanically milling them to reduce particle size. Films, coatings, and other useful articles can be prepared from such dispersions and powders.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: WILDCAT DISCOVERY TECHNOLOGIES, INC.
    Inventors: Mark S. Bailey, Doron Greenberg, Steven S. Kaye
  • Publication number: 20120273716
    Abstract: A cobalt-containing phosphate material can comprise lithium (Li) (or, alternatively or additionally other alkali metal(s)), cobalt (Co), phosphate (PO4), and at least two additional metals other than Li and Co (e.g., as dopants and/or metal oxides), and can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) of at least 0.2, at least 0.3, at least 0.5, at least 0.7, or at least about 0.75. The cobalt-containing phosphate material can have a molar ratio of Co to a total amount of Co and the additional metals (e.g., as dopants and/or metal oxides) ranging from 0.2 to 0.98, from 0.3 to 0.98, from 0.3 to 0.94, from 0.5 to 0.98, from 0.5 to 0.94, or alternatively from 0.5 to 0.9, from 0.7 to 0.9, or from 0.75 to 0.85.
    Type: Application
    Filed: December 23, 2011
    Publication date: November 1, 2012
    Inventors: Bin Li, Steven Kaye, Doron Greenberg, Conor Riley, Jingning Shan, Jen-Hsien Yang
  • Publication number: 20120090539
    Abstract: A device for infusing liquid into material samples includes a container assembly configured to contain multiple material samples submerged in liquid. The material samples have pores containing air or gas. A pressure source and a vacuum source are both operatively connectable to the container assembly and alternately communicable with the container assembly to force the liquid to at least substantially fill the pores. The samples are thus ready for further processing, testing or use. A method of filling pores in material samples with liquid includes supporting multiple material samples within liquid in an airtight container assembly. The method further includes alternately applying a vacuum source and a pressure source to the container assembly, thereby replacing air with liquid in the pores of the material samples.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 19, 2012
    Applicant: Wildcat Discovery Technologies
    Inventors: Justin James Dutton, Paul Christopher Ziegelbauer, Doron Greenberg, David James Brecht, Bin Li