Patents by Inventor Doug Abraham

Doug Abraham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9846244
    Abstract: One or more techniques and/or systems are described for addressing (e.g., during calibration) pixel-by-pixel variations in an image modality that utilizes photon counting techniques, such as by adjusting a number of photons detected by certain pixels (e.g., redistributing or reallocating detected photons among pixels). Such variations may cause an effective area of one or more pixels of a detector array to be larger than the effective area of other pixels, resulting in more photons being counted by some pixels than others, which can degrade resulting images. Accordingly, photons are redistributed as provided herein so that, when exposed to substantially uniform radiation, photon counts of neighboring pixels are substantially equal, statistical noise among neighboring pixels is substantially equal, and a signal-to-noise ratio among neighboring pixels is substantially equal.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 19, 2017
    Assignee: ANALOGIC CORPORATION
    Inventors: Doug Abraham, Basak Ulker Karbeyaz, Olivier Tousignant
  • Patent number: 9042514
    Abstract: Among other things, one or more systems and/or techniques are described for dynamically adjusting, in a fan-angle direction, attenuation of radiation during an examination of an object such that portions of the object that are not represented in resulting (tilted/targeted) images of the object are exposed to less radiation than portions of the object that are represented in resulting (tilted/targeted) images of the object. As a rotating gantry is rotated, blades of a pre-object collimator are dynamically repositioned to selectively attenuate emitted radiation. A collimator adjustment component may be configured to determine how to reposition the blades based at least in part upon at least one of a desired tilt of the resulting (tilted) image(s), a translational position of the object, and a gantry rotation angle, for example.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: May 26, 2015
    Assignee: Analogic Corporation
    Inventors: Doug Abraham, Lane Howitt, Mitchell Surowiec, Carl DeVincent, David Rozas
  • Patent number: 8941076
    Abstract: The techniques described herein provide for correcting for pulse pile-up and/or charge sharing in a radiation scanner (100). It finds particular application with the use of a pixilated radiation detector (116) (e.g., a photon counting detector). A circuit (200), comprising a plurality of comparators (204, 206, 208), is configured to determine the energy spectrum of a pulse produced from a photon strike. If the energy spectrum is greater than the energy range for a pulse produced by a single photon strike given an input spectrum and/or if pulses produced from adjacent pixels have temporal coincidence, pulse pile-up and/or charge sharing may be identified and a correction mechanism/correction factors may be applied to determine an actual number of photons that struck the detector (116).
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: January 27, 2015
    Assignee: Analogic Corporation
    Inventor: Doug Abraham
  • Publication number: 20140326894
    Abstract: One or more techniques and/or systems are described for addressing (e.g., during calibration) pixel-by-pixel variations in an image modality that utilizes photon counting techniques, such as by adjusting a number of photons detected by certain pixels (e.g., redistributing or reallocating detected photons among pixels). Such variations may cause an effective area of one or more pixels of a detector array to be larger than the effective area of other pixels, resulting in more photons being counted by some pixels than others, which can degrade resulting images. Accordingly, photons are redistributed as provided herein so that, when exposed to substantially uniform radiation, photon counts of neighboring pixels are substantially equal, statistical noise among neighboring pixels is substantially equal, and a signal-to-noise ratio among neighboring pixels is substantially equal.
    Type: Application
    Filed: September 30, 2011
    Publication date: November 6, 2014
    Inventors: Doug Abraham, Basak Ulker Karbeyaz, Olivier Tousignant
  • Publication number: 20130308747
    Abstract: Among other things, one or more systems and/or techniques are described for dynamically adjusting, in a fan-angle direction, attenuation of radiation during an examination of an object such that portions of the object that are not represented in resulting (tilted/targeted) images of the object are exposed to less radiation than portions of the object that are represented in resulting (tilted/targeted) images of the object. As a rotating gantry is rotated, blades of a pre-object collimator are dynamically repositioned to selectively attenuate emitted radiation. A collimator adjustment component may be configured to determine how to reposition the blades based at least in part upon at least one of a desired tilt of the resulting (tilted) image(s), a translational position of the object, and a gantry rotation angle, for example.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: Analogic Corporation
    Inventors: Doug Abraham, Lane Howitt, Mitchell Surowiec, Carl DeVincent, David Rozas
  • Publication number: 20120112088
    Abstract: The techniques described herein provide for correcting for pulse pile-up and/or charge sharing in a radiation scanner (100). It finds particular application with the use of a pixilated radiation detector (1 16) (e.g., a photon counting detector). A circuit (200), comprising a plurality of comparators (204, 206, 208), is configured to determine the energy spectrum of a pulse produced from a photon strike. If the energy spectrum is greater than the energy range for a pulse produced by a single photon strike given an input spectrum and/or if pulses produced from adjacent pixels have temporal coincidence, pulse pile-up and/or charge sharing may be identified and a correction mechanism/correction factors may be applied to determine an actual number of photons that struck the detector (1 16).
    Type: Application
    Filed: June 30, 2009
    Publication date: May 10, 2012
    Inventor: Doug Abraham