Patents by Inventor Doug B. Ingerly

Doug B. Ingerly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145410
    Abstract: Moisture hermetic guard ring structures for semiconductor devices, related systems, and methods of fabrication are disclosed. Such devices systems, and methods include a guard ring structure laterally surrounding semiconductor devices of a device layer and metal interconnects of an interconnect layer, the guard ring structure extending through the interconnect layer, the device layer, and a bonding layer adjacent one of the interconnect layer or the device layer the bonding layer, and contacting a support substrate coupled to the bonding layer. Such devices systems, and methods may further include via structures having the same material system as the guard ring structure and also extending through the interconnect, the device, and bonding layers and contacting a support substrate.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Applicant: Intel Corporation
    Inventors: Mohammad Kabir, Conor P. Puls, Babita Dhayal, Han Li, Keith E. Zawadzki, Hannes Greve, Avyaya Jayanthinarasimham, Mukund Bapna, Doug B. Ingerly
  • Patent number: 11901347
    Abstract: Embodiments may relate to a microelectronic package. The microelectronic package may include a memory die with: a first memory cell at a first layer of the memory die; a second memory cell at a second layer of the memory die; and a via in the memory die that communicatively couples an active die with a package substrate of the microelectronic package. Other embodiments may be described or claimed.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Wilfred Gomes, Mauro J. Kobrinsky, Doug B. Ingerly, Tahir Ghani
  • Publication number: 20240030213
    Abstract: Microelectronic assemblies fabricated using hybrid manufacturing, as well as related devices and methods, are disclosed herein. As used herein, “hybrid manufacturing” refers to fabricating a microelectronic assembly by arranging together at least two IC structures fabricated by different manufacturers, using different materials, or different manufacturing techniques. For example, a microelectronic assembly may include a first IC structure that includes first interconnects and a second IC structure that includes second interconnects, where at least some of the first and second interconnects may include a liner and an electrically conductive fill material, and where a material composition of the liner/electrically conductive fill material of the first interconnects may be different from a material composition of the liner/electrically conductive fill material of the second interconnects.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma, Mauro J. Kobrinsky, Doug B. Ingerly
  • Patent number: 11817442
    Abstract: Microelectronic assemblies fabricated using hybrid manufacturing, as well as related devices and methods, are disclosed herein. As used herein, “hybrid manufacturing” refers to fabricating a microelectronic assembly by arranging together at least two IC structures fabricated by different manufacturers, using different materials, or different manufacturing techniques. For example, a microelectronic assembly may include a first IC structure that includes first interconnects and a second IC structure that includes second interconnects, where at least some of the first and second interconnects may include a liner and an electrically conductive fill material, and where a material composition of the liner/electrically conductive fill material of the first interconnects may be different from a material composition of the liner/electrically conductive fill material of the second interconnects.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: November 14, 2023
    Assignee: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma, Mauro J. Kobrinsky, Doug B. Ingerly
  • Patent number: 11756886
    Abstract: Microelectronic assemblies fabricated using hybrid manufacturing, as well as related devices and methods, are disclosed herein. As used herein, “hybrid manufacturing” refers to fabricating a microelectronic assembly by arranging together at least two IC structures fabricated by different manufacturers, using different materials, or different manufacturing techniques. For example, a microelectronic assembly may include a first IC structure that includes first interconnects and a second IC structure that includes second interconnects, where at least some of the first and second interconnects may include a liner and an electrically conductive fill material, and where a material composition of the liner/electrically conductive fill material of the first interconnects may be different from a material composition of the liner/electrically conductive fill material of the second interconnects.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma, Mauro J. Kobrinsky, Doug B. Ingerly
  • Publication number: 20220399310
    Abstract: Microelectronic assemblies fabricated using hybrid manufacturing with modified via-last process are disclosed. The fabrication approach is based on using hybrid manufacturing to bond first and second IC structures originally provided on different dies but filling at least portions of vias that are supposed to couple across a bonding interface between the first and second IC structures with electrically conductive materials after the IC structures have been bonded. A resulting microelectronic assembly that includes the first and second IC structures bonded together may have vias extending through all of the first IC structure and into the second IC structure, thus providing electrical coupling between one or more components of the first IC structure and those of the second IC structure, where an electrically conductive material in the individual vias is continuous through the first IC structure and at least a portion of the second IC structure.
    Type: Application
    Filed: June 11, 2021
    Publication date: December 15, 2022
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Wilfred Gomes, Mauro J. Kobrinsky, Doug B. Ingerly, Van H. Le
  • Publication number: 20220181256
    Abstract: Microelectronic assemblies fabricated using hybrid manufacturing, as well as related devices and methods, are disclosed herein. As used herein, “hybrid manufacturing” refers to fabricating a microelectronic assembly by arranging together at least two IC structures fabricated by different manufacturers, using different materials, or different manufacturing techniques. For example, a microelectronic assembly may include a first IC structure that includes first interconnects and a second IC structure that includes second interconnects, where at least some of the first and second interconnects may include a liner and an electrically conductive fill material, and where a material composition of the liner/electrically conductive fill material of the first interconnects may be different from a material composition of the liner/electrically conductive fill material of the second interconnects.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 9, 2022
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma, Mauro J. Kobrinsky, Doug B. Ingerly
  • Publication number: 20220181313
    Abstract: Microelectronic assemblies fabricated using hybrid manufacturing, as well as related devices and methods, are disclosed herein. As used herein, “hybrid manufacturing” refers to fabricating a microelectronic assembly by arranging together at least two IC structures fabricated by different manufacturers, using different materials, or different manufacturing techniques. For example, a microelectronic assembly may include a first IC structure that includes first interconnects and a second IC structure that includes second interconnects, where at least some of the first and second interconnects may include a liner and an electrically conductive fill material, and where a material composition of the liner/electrically conductive fill material of the first interconnects may be different from a material composition of the liner/electrically conductive fill material of the second interconnects.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 9, 2022
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma, Mauro J. Kobrinsky, Doug B. Ingerly
  • Publication number: 20220173090
    Abstract: Various aspects of the present disclosure set forth IC dies, microelectronic assemblies, as well as related devices and packages. One aspect relates to disaggregating 3D monolithic memory and compute functions to enable tight coupling for fast memory access at high bandwidth. Another aspect relates to microelectronic assemblies relate to nano-TSVs with 3D monolithic memory. Further aspects relate to die stitching and the use of glass carrier structures in microelectronic assemblies. Various aspects disclosed herein advantageously provide a robust set of implementations that may enable significant improvements in terms of optimizing performance of individual IC dies, microelectronic assemblies including one or more of such dies, and IC packages and devices including one or more of such microelectronic assemblies.
    Type: Application
    Filed: March 24, 2021
    Publication date: June 2, 2022
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma, Van H. Le, Doug B. Ingerly
  • Publication number: 20220173046
    Abstract: Various aspects of the present disclosure set forth IC dies, microelectronic assemblies, as well as related devices and packages, related to direct chip attach of dies and circuit boards. An example microelectronic assembly includes a die with IC components provided over the die's frontside, and a metallization stack provided over the die's backside. The die further includes die interconnects extending between the frontside and the backside of the die, to electrically couple the IC components and the metallization stack. The assembly further includes backside conductive contacts, provided over the side of the metallization stack facing away from the die, the backside conductive contacts configured to route signals to/from the IC components via the metallization stack and the die interconnects, and configured to be coupled to respective conductive contacts of a circuit board in absence of a package substrate between the die and the circuit board.
    Type: Application
    Filed: March 24, 2021
    Publication date: June 2, 2022
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Sanka Ganesan, Abhishek A. Sharma, Doug B. Ingerly, Mauro J. Kobrinsky, Kevin Fischer
  • Publication number: 20210407932
    Abstract: Moisture hermetic guard ring structures for semiconductor devices, related systems, and methods of fabrication are disclosed. Such devices systems, and methods include a guard ring structure laterally surrounding semiconductor devices of a device layer and metal interconnects of an interconnect layer, the guard ring structure extending through the interconnect layer, the device layer, and a bonding layer adjacent one of the interconnect layer or the device layer the bonding layer, and contacting a support substrate coupled to the bonding layer. Such devices systems, and methods may further include via structures having the same material system as the guard ring structure and also extending through the interconnect, the device, and bonding layers and contacting a support substrate.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Mohammad Kabir, Conor P. Puls, Babita Dhayal, Han Li, Keith E. Zawadzki, Hannes Greve, Avyaya Jayanthinarasimham, Mukund Bapna, Doug B. Ingerly
  • Publication number: 20210375849
    Abstract: Embodiments may relate to a microelectronic package. The microelectronic package may include a memory die with: a first memory cell at a first layer of the memory die; a second memory cell at a second layer of the memory die; and a via in the memory die that communicatively couples an active die with a package substrate of the microelectronic package. Other embodiments may be described or claimed.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Mauro J. Kobrinsky, Doug B. Ingerly, Tahir Ghani
  • Patent number: 10886195
    Abstract: A semiconductor structure is described. The semiconductor structure includes a semiconductor substrate and a through-silicon via (TSV). The TSV is disposed between a first surface of the semiconductor substrate and an interconnection layer disposed on a second surface of the semiconductor substrate, where the first surface of the semiconductor substrate is opposite to the second surface. The TSV has an external surface that interfaces with the semiconductor substrate. In one embodiment, the external surface includes a protrusion that extends into the semiconductor substrate. In another embodiment, the TSV includes one or more voids. In yet another embodiment, the TSV includes both protrusions and voids. The protrusions and/or the one or more voids may reduce thermal expansion stress. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: January 5, 2021
    Assignee: Intel Corporation
    Inventors: Doug B. Ingerly, Candi S. Cook
  • Patent number: 10811354
    Abstract: Embodiments of the present disclosure describe apparatuses, methods, and systems associated with a fuse array of an integrated circuit. An integrated circuit may include a first metallization layer including a plurality of trenches separated by an interlayer dielectric (ILD), wherein the ILD forms a protrusion that extends above a top surface of the trenches. An etch stop layer may be disposed on the first metallization layer. The integrated circuit may further include a fuse disposed on the etch stop layer, wherein the fuse includes a fuse channel coupled between an anode and a cathode, wherein the fuse channel is disposed directly above the protrusion and is in contact with the etch stop layer. The integrated circuit may additionally or alternatively include one or more dummy regions adjacent to the fuse channel and separated from the fuse channel by a dielectric material. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 20, 2020
    Assignee: Intel Corporation
    Inventors: Gwang-Soo Kim, Doug B. Ingerly
  • Publication number: 20190326216
    Abstract: Embodiments of the present disclosure describe apparatuses, methods, and systems associated with a fuse array of an integrated circuit. An integrated circuit may include a first metallization layer including a plurality of trenches separated by an interlayer dielectric (ILD), wherein the ILD forms a protrusion that extends above a top surface of the trenches. An etch stop layer may be disposed on the first metallization layer. The integrated circuit may further include a fuse disposed on the etch stop layer, wherein the fuse includes a fuse channel coupled between an anode and a cathode, wherein the fuse channel is disposed directly above the protrusion and is in contact with the etch stop layer. The integrated circuit may additionally or alternatively include one or more dummy regions adjacent to the fuse channel and separated from the fuse channel by a dielectric material. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 24, 2019
    Inventors: GWANG-SOO KIM, DOUG B. INGERLY
  • Publication number: 20190311973
    Abstract: A semiconductor structure is described. The semiconductor structure includes a semiconductor substrate and a through-silicon via (TSV). The TSV is disposed between a first surface of the semiconductor substrate and an interconnection layer disposed on a second surface of the semiconductor substrate, where the first surface of the semiconductor substrate is opposite to the second surface. The TSV has an external surface that interfaces with the semiconductor substrate. In one embodiment, the external surface includes a protrusion that extends into the semiconductor substrate. In another embodiment, the TSV includes one or more voids. In yet another embodiment, the TSV includes both protrusions and voids. The protrusions and/or the one or more voids may reduce thermal expansion stress. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: August 18, 2016
    Publication date: October 10, 2019
    Applicant: INTEL CORPORATION
    Inventors: Doug B. Ingerly, Candi S. Cook