Patents by Inventor Doug Heermann

Doug Heermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9354136
    Abstract: A method and system for determination of multiple shrapnel hits on a gridless target surface utilizes multiple radio frequency or acoustic emission transducers on the target surface to detect energy waves created by the impact of shrapnel on the surface that occur at the point of initial contact and after the initial impact. Data regarding the detection, timing, and location of multiple impact events is acquired and transmitted to a remote processing location where the data is processed to determine the timing and location of all the shrapnel hits and derive final lethality information.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: May 31, 2016
    Assignee: INVOCON, INC.
    Inventors: Brian Philpot, Doug Heermann
  • Patent number: 8307694
    Abstract: A hypervelocity impact detection method and system for determining the precise impact location in a detection surface, of impacts such as ballistic missile intercepts, micrometeoroids and orbital debris (MMOD) or other shock events, utilizes a gridless detection surface capable of propagating radio frequency (RF) impact detection signals responsive to receiving hypervelocity impacts from objects, and multiple sensors on the detection surface that directly measure radio frequency RF emissions generated by the hypervelocity impacts on the surface, and a time of arrival (TOA) position measurement technique for determining the precise impact location in the detection surface.
    Type: Grant
    Filed: November 7, 2009
    Date of Patent: November 13, 2012
    Assignee: Invocon, Inc.
    Inventors: Karl F. Kiefer, Doug Heermann, Eric Krug, Guinara Ajupova
  • Patent number: 8279425
    Abstract: A system and method for performing lethality assessment utilizes frequency domain reflectometry (FDR) to determine impact point and damage propagation faults in a detection surface. The detection surface has a conductive layer capable of propagating radio frequency (RF) signals. At least one signal transmit/receive port on the detection surface injects a radio frequency (RF) interrogation signal into the detection surface and at least two signal receive-only ports on the detection surface spaced a distance apart from each other and from the signal transmit/receive port receive reflected radio frequency (RF) signals of the interrogation signal. A frequency domain reflectometry measurement system coupled with the transmit/receive port and signal receive-only ports measures frequency responses of the ports compared to predetermined baseline measurements and determines the precise location of an impact point and damage propagation fault in the detection surface by triangulation.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 2, 2012
    Assignee: Invocon, Inc.
    Inventors: Doug Heermann, Karl F. Kiefer