Patents by Inventor Douglas A. Hettrick

Douglas A. Hettrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240138737
    Abstract: Techniques for using multiple physiological parameters to provide an early warning for worsening heart failure are described. A medical device monitors a primary diagnostic parameter that is indicative of worsening heart failure, such as intrathoracic impedance or pressure, and one or more secondary diagnostic parameters. The medical device detects worsening heart failure in the patient based on the primary diagnostic parameter when an index that is changed over time based on the primary diagnostic parameter value is outside a range of values, termed the threshold zone. When the index is within the threshold zone, the medical device detects worsening heart failure in the patient based on the one or more secondary diagnostic parameters. Upon detecting worsening heart failure, the medical device may, for example, provide an alert that enables the patient to seek medical attention before experiencing a heart failure event.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Inventors: Shantanu Sarkar, Douglas A. Hettrick, Robert W. Stadler
  • Publication number: 20240065757
    Abstract: Systems and methods for neuromodulation therapy are disclosed herein. A method in accordance with embodiments of the present technology can include, for example, positioning a plurality of reference electrodes at the skin of a human patient and intravascularly positioning a plurality of ablation electrodes within a blood vessel lumen at a treatment site. The method can include obtaining impedance measurements between different combinations of the reference electrodes and the ablation electrodes and, based on the impedance measurements, identifying two or more electrode groups for treatment, where at least two of the electrode groups include a different one of the reference electrodes and a different one of the ablation electrodes.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 29, 2024
    Inventors: Douglas A. Hettrick, Julie Trudel, Paul Coates, Robert J. Melder, Stefan S. Tunev, Martin Rothman, Sean Salmon
  • Patent number: 11890047
    Abstract: Methods for treating anxiety disorders and for reducing a risk associated with developing an anxiety disorder in patients via therapeutic renal neuromodulation and associated systems are disclosed herein. Sympathetic nerve activity can contribute to several cellular and physiological conditions associated with anxiety disorders as well as an increased risk of developing an anxiety disorder. One aspect of the present technology is directed to methods for improving a patient's calculated risk score corresponding to an anxiety disorder status in the patient. Other aspects are directed to reducing a likelihood of developing an anxiety disorder in patients presenting one or more anxiety disorder risk factors. Renal sympathetic nerve activity can be attenuated to improve a patient's anxiety disorder status or risk of developing an anxiety disorder. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to use, e.g.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: February 6, 2024
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventors: Gabriel Lazarus, Douglas A. Hettrick
  • Publication number: 20240032801
    Abstract: A method of determining blood vessel stiffness including, acquiring a plurality of images of a portion of a blood vessel, analyzing the plurality of images to determine a maximum diameter of the portion of the blood vessel at a plurality of points along the blood vessel, analyzing the plurality of images to determine a minimum diameter of the portion of the blood vessel at the plurality of points along the blood vessel, determining a blood pressure experienced in the portion of the blood vessel, and calculating a stiffness of the portion of the blood vessel based on a ratio of the blood pressure and a difference in a diameter of the blood vessel at one or more of the plurality of points along the blood vessel.
    Type: Application
    Filed: June 16, 2023
    Publication date: February 1, 2024
    Inventors: Paul J. Coates, Douglas A. Hettrick, Darion R. Peterson
  • Publication number: 20240024654
    Abstract: Occlusive denervation catheters with treatment elements including integrated check valves and varied lumen positioning. An integrated check valve opens at a certain pressure to allowing a specified maximal fluid flow. The check valve enables some (sterile) cooling fluid volume to escape from the balloon into the artery under treatment. Additional fluid flow could still be recovered via the outflow lumen of the treatment element. In some aspects, the check valve is activated by increasing the pressure of the inlet flow during the high-power phase of ultrasonic energy delivery and reducing the pressure after energy delivery. In some aspects, inlet pressure may be increased based on an actual or predicted temperature increase in the balloon.
    Type: Application
    Filed: June 12, 2023
    Publication date: January 25, 2024
    Inventors: Douglas A. Hettrick, Paul J. Coates, Gerry O. McCaffrey
  • Patent number: 11864904
    Abstract: Systems and methods for measuring the magnetic fields generated by renal nerves before and/or after neuromodulation therapy are disclosed herein. One method for measuring the magnetic field of target nerves during a neuromodulation procedure includes positioning a neuromodulation catheter at a target site within a renal blood vessel of a human patient near the target nerves, and detecting a measurement of the magnetic field generated by the target nerves. The method can further include determining, based on the measurement of the magnetic field, a location of the target nerves, a location of ablation at the target nerves, and/or a percentage the target nerves were ablated by delivered neuromodulation energy.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: January 9, 2024
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventors: Abhijeet Dubhashi, Douglas Hettrick, Guo Xu
  • Patent number: 11865343
    Abstract: Methods for treating post-traumatic stress disorder (PTSD) and/or for reducing a risk associated with developing PTSD in patients via therapeutic renal neuromodulation and associated systems are disclosed herein. Sympathetic nerve activity can contribute to several cellular and physiological conditions associated with PTSD as well as an increased risk of developing PTSD following a traumatic event. One aspect of the present technology is directed to methods for improving a patient's calculated risk score corresponding to a PTSD status in the patient. Other aspects are directed to reducing a likelihood of developing PTSD in patients presenting one or more PTSD risk factors. Renal sympathetic nerve activity can be attenuated to improve a patient's PTSD status or risk of developing PTSD. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to use, e.g.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: January 9, 2024
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventors: Marcia Gallagher, Douglas A. Hettrick
  • Patent number: 11844568
    Abstract: Systems and methods for neuromodulation therapy are disclosed herein. A method in accordance with embodiments of the present technology can include, for example, positioning a plurality of reference electrodes at the skin of a human patient and intravascularly positioning a plurality of ablation electrodes within a blood vessel lumen at a treatment site. The method can include obtaining impedance measurements between different combinations of the reference electrodes and the ablation electrodes and, based on the impedance measurements, identifying two or more electrode groups for treatment, where at least two of the electrode groups include a different one of the reference electrodes and a different one of the ablation electrodes.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: December 19, 2023
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventors: Douglas A. Hettrick, Julie Trudel, Paul Coates, Robert J. Melder, Stefan S. Tunev, Martin Rothman, Sean Salmon
  • Patent number: 11844558
    Abstract: Methods for treating eating disorders and for reducing a risk associated with developing an eating disorder in patients via therapeutic renal neuromodulation and associated systems. Renal sympathetic nerve activity can be attenuated to improve a patient's eating disorder status or risk of developing an eating disorder. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to modulate the renal sympathetic nerve.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: December 19, 2023
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventors: Gabriel Lazarus, Douglas A. Hettrick
  • Publication number: 20230380705
    Abstract: A system may measure, by one or more sensors, a biometric parameter associated with a subject. The system may determine values of a control parameter based on measuring the biometric parameter. The control parameter may include blood pressure of the subject. The system may perform a control measure based on a comparison of the values of the control parameters to a threshold. Performing the control measure may include delivering therapy treatment to the subject or outputting a notification indicating an action associated with treating a medical condition. Measuring the biometric parameter, determining the values of the control parameter, and performing the control measure may be in response to one or more trigger criteria.
    Type: Application
    Filed: May 1, 2023
    Publication date: November 30, 2023
    Inventors: Richard J. O'Brien, Todd M. Zielinski, Nathan A. Torgerson, Lilian Kornet, Richard N. Cornelussen, Shantanu Sarkar, Veronica Ramos, Douglas A. Hettrick, Yong K. Cho
  • Publication number: 20230309902
    Abstract: Systems and methods for assessing sympathetic nervous system (SNS) tone for renal neuromodulation therapy are disclosed herein. A system configured in accordance with embodiments of the present technology can include, for example, a detector attached to or implanted in a patient and a receiver communicatively coupled to the detector. The detector can measure cardiac data and the receiver and/or a device communicatively coupled thereto can analyze the cardiac data to provide one or more SNS tone indicators. The SNS tone indicators can be used to determine whether a patient will be responsive to a neuromodulation therapy and/or whether a neuromodulation therapy was effective.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 5, 2023
    Inventors: Douglas Hettrick, Shantanu Sarkar
  • Patent number: 11723537
    Abstract: Techniques for transmitting diagnostic information stored in an implantable medical device (IMD) based on patient hospitalization are described. For example, the IMD may transmit higher resolution diagnostic information to a clinician and/or an external device during a hospitalization period to aid the clinician in evaluating heart failure treatment and when discharge is proper. This higher resolution diagnostic information may include one or more patient metrics automatically generated and transmitted by the IMD at least once every two hours. During a post-hospitalization period, the IMD may transmit lower resolution diagnostic information to a clinician that indicates a risk level of re-hospitalization. The lower resolution diagnostic information may include the risk level and/or patient metrics once a day, for example. In this manner, the IMD transmitted diagnostic information may be tailored to the specific heart failure monitoring needed by the patient.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Jodi L. Redemske, Eduardo N. Warman, Douglas A. Hettrick, Kevin T. Ousdigian
  • Publication number: 20230240549
    Abstract: Systems and methods for performing and assessing neuromodulation therapy are disclosed herein. One method for assessing the efficacy of neuromodulation therapy includes positioning a neuromodulation catheter at a target site within a renal blood vessel of a human patient and delivering neuromodulation energy at the target site with the neuromodulation catheter. The method can further include obtaining a measurement related to a blood flow rate through the renal blood vessel via the neuromodulation catheter. The measurement can be compared to a baseline measurement related to the blood flow rate through the renal blood vessel to assess the efficacy of the neuromodulation therapy. In some embodiments, the baseline and post-neuromodulation measurements are obtained by injecting an indicator fluid into the renal blood vessel upstream of the target site and detecting a transient change in vessel impedance caused by the indicator fluid.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Inventors: Douglas Hettrick, Paul Coates
  • Patent number: 11707220
    Abstract: Systems and methods for assessing sympathetic nervous system (SNS) tone for renal neuromodulation therapy are disclosed herein. A system configured in accordance with embodiments of the present technology can include, for example, a detector attached to or implanted in a patient and a receiver communicatively coupled to the detector. The detector can measure cardiac data and the receiver and/or a device communicatively coupled thereto can analyze the cardiac data to provide one or more SNS tone indicators. The SNS tone indicators can be used to determine whether a patient will be responsive to a neuromodulation therapy and/or whether a neuromodulation therapy was effective.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: July 25, 2023
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventors: Douglas Hettrick, Shantanu Sarkar
  • Patent number: 11633120
    Abstract: Systems and methods for performing and assessing neuromodulation therapy are disclosed herein. One method for assessing the efficacy of neuromodulation therapy includes positioning a neuromodulation catheter at a target site within a renal blood vessel of a human patient and delivering neuromodulation energy at the target site with the neuromodulation catheter. The method can further include obtaining a measurement related to a blood flow rate through the renal blood vessel via the neuromodulation catheter. The measurement can be compared to a baseline measurement related to the blood flow rate through the renal blood vessel to assess the efficacy of the neuromodulation therapy. In some embodiments, the baseline and post-neuromodulation measurements are obtained by injecting an indicator fluid into the renal blood vessel upstream of the target site and detecting a transient change in vessel impedance caused by the indicator fluid.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: April 25, 2023
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Douglas Hettrick, Paul Coates
  • Patent number: 11553960
    Abstract: Methods for treating hypertension and associated systems and methods are disclosed herein. One aspect of the present technology, for example, is directed to methods for therapeutic renal neuromodulation that partially inhibit sympathetic neural activity in renal nerves proximate a renal blood vessel of a human patient having a 24-hour heart rate at or above a median heart rate for a population of hypertensive patients. This reduction in sympathetic neural activity is expected to therapeutically treat one or more conditions associated with hypertension of the patient. Renal sympathetic nerve activity can be modulated, for example, using an intravascularly positioned catheter carrying a neuromodulation assembly, e.g., a neuromodulation assembly configured to use electrically-induced, thermally-induced, and/or chemically-induced approaches to modulate the renal nerves.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: January 17, 2023
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Michael Bohm, Felix Mahfoud, Sandeep Brar, Douglas Hettrick, Martin Fahy
  • Patent number: 11547360
    Abstract: Systems and methods include differential diagnosis for acute heart failure to provide treatment to a patient including determining whether the patient has cardiac volume overload, determining whether the patient has decreased abdominal venous system volume, and providing the appropriate treatment in response to the determinations. A multi-sensor system may be used to determine cardiac volume and abdominal venous system volume. Fluid redistribution treatment may be provided when cardiac volume overload is accompanied by a decrease in abdominal venous system volume. Fluid accumulation treatment may be provided when cardiac volume overload is not accompanied by a decrease in abdominal venous system volume.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: January 10, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Yong K. Cho, Tom D. Bennett, Douglas A. Hettrick, Charles P. Sperling, Paul A. Sobotka, Vinod Sharma, Eduardo N. Warman, Todd M. Zielinski
  • Publication number: 20220409059
    Abstract: Systems and methods for informing and evaluating neuromodulation therapy are disclosed herein. A system configured in accordance with embodiments of the present technology can include, for example, a guidewire having a proximal portion, a distal portion configured to be positioned at a target site in a blood vessel of a human patient, and a sensing element positioned along the distal portion. The sensing element can be a pressure sensing element, a flow sensing element, an impedance sensing element, and/or a temperature sensing element. The system can further include a controller configured to obtain one or more measurements related to a physiological parameter of the patient via the sensing element. Based on the measurements, the controller can determine the physiological parameter and compare the parameter to a predetermined threshold. Based on the comparison, the controller and/or the operator can assess the likelihood of the patient benefitting from neuromodulation therapy.
    Type: Application
    Filed: September 7, 2022
    Publication date: December 29, 2022
    Inventors: Julie Trudel, Douglas Hettrick
  • Publication number: 20220370112
    Abstract: Methods for treating eating disorders and for reducing a risk associated with developing an eating disorder in patients via therapeutic renal neuromodulation and associated systems. Renal sympathetic nerve activity can be attenuated to improve a patient's eating disorder status or risk of developing an eating disorder. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to modulate the renal sympathetic nerve.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 24, 2022
    Inventors: Gabriel Lazarus, Douglas A. Hettrick
  • Publication number: 20220354581
    Abstract: Example systems and techniques for denervation, for example, renal denervation. In some examples, a processor determines one or more tissue characteristics of tissue proximate a target nerve and a blood vessel. The processor may generate, based on the one or more tissue characteristics, an estimated volume of influence of denervation therapy delivered by a therapy delivery device disposed within the blood vessel. The processor may generate a graphical user interface including a graphical representation of the tissue proximate the target nerve and the blood vessel and a graphical representation of the estimated volume of influence.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Paul J. Coates, Douglas A. Hettrick