Patents by Inventor Douglas A. Howard

Douglas A. Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190373411
    Abstract: A system and method for proximity based social networking is disclosed between mobile computing devices each having a short range communication (SRC) device using near field magnetic induction. The SRC devices can include at least two antennas to provide magnetic induction diversity. The method comprises defining a proximity boundary with dimensions defined by a communication range of the SRC devices. A proximity signal is communicated in the proximity boundary between the SRC devices. Information can be exchanged between the mobile computing devices based on the settings of a social networking filter module.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Inventor: Douglas Howard DOBYNS
  • Publication number: 20190356358
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard. An RF link can be established between the first SRC device and the second SRC device to enable selected data communications to continue between the first SRC device and the second SRC device even after one or more of the first SRC device or the second SRC device exits the proximity boundary.
    Type: Application
    Filed: December 21, 2018
    Publication date: November 21, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Patent number: 10449532
    Abstract: Exemplary embodiments of methods and systems for hydrogen production using an electro-activated material (catalyst) are provided. The catalysts can be chosen from various elements that have characteristics that fall within a particular range. In some exemplary embodiments, a material can be electro-activated and used as a catalyst in a chemical reaction with a fuel such as water or another hydrogen containing molecule. Another fuel can also be added, such as aluminum, to generate hydrogen. Controlling the temperature of the reaction, the amount of the catalyst and/or the amounts of aluminum can provide hydrogen on demand at a desired rate of hydrogen generation.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 22, 2019
    Inventor: Douglas Howard Phillips
  • Publication number: 20190274005
    Abstract: A system and method for communication of proximity based content is disclosed between a mobile computing device having a Short Range Communication (SRC) device and a Proximity Short Range Communication (PSRC) device associated with a location or object using near field magnetic induction. The SRC device and/or the PSRC device can include at least two antennas to provide magnetic induction diversity. The method comprises defining a proximity boundary with dimensions defined by a magnetic induction diversity communication range of at least one of the SRC and PSRC devices. A proximity signal is communicated in the proximity boundary between the SRC device and the PSRC device. At least one action is performed by the mobile computing device or the PSRC device when the proximity signal is detected between the SRC device and the PSRC device.
    Type: Application
    Filed: October 30, 2018
    Publication date: September 5, 2019
    Inventor: Douglas Howard Dobyns
  • Publication number: 20190268041
    Abstract: Technology for a spatially aware wireless network is disclosed. One embodiment comprises a plurality of near field magnetic induction nodes. One or more nodes is configured to communicate a polarized spatial position signal using near field magnetic induction (NFMI) to determine one or more of a position and an orientation of one or more nodes in the spatially aware wireless network. A detection module is operable to configure the spatially aware wireless network based one or more of a position and an orientation of one or more nodes in the plurality of nodes.
    Type: Application
    Filed: December 21, 2018
    Publication date: August 29, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190253104
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device, wherein at least one of the first and second SRC devices includes at least two antennas to provide magnetic induction diversity. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device and the second SRC device using NFMI when the proximity signal is detected between the first SRC device and the second SRC device.
    Type: Application
    Filed: September 25, 2018
    Publication date: August 15, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190238185
    Abstract: A system for near field communications is provided. The system can include a near field generator configured to generate a near field detectable signal comprising information. The system can include a near field detector configured to receive the near field detectable signal and output the information. The system can include an Electro-Magnetic (EM) shield surrounding the near field generator to block EM radio frequency (RF) signals in the vicinity of the near field generator from interfering with operations of the near field generator. The EM shield does not prevent communication of the near field detectable signal between the near field generator and the near field detector. The EM shield can be configured to reduce magnetic field loss from eddy currents in the EM shield as the near field detectable signal passes through the EM shield.
    Type: Application
    Filed: December 21, 2018
    Publication date: August 1, 2019
    Inventor: Douglas Howard Dobyns
  • Publication number: 20190238186
    Abstract: Spatially enabled secure communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. Secure data can be selected for NFMI communication on a spatially secure NFMI data link between the one or more SRC devices. Non-secure data can be selected for communication on one of a wireless local area network or a wireless wide area network.
    Type: Application
    Filed: January 28, 2019
    Publication date: August 1, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190229772
    Abstract: A method for close proximity communication is disclosed. The method comprises detecting a signal transmitted by a close proximity communication (CPC) device at one of a distance of greater than or less than a CPC detection perimeter with a multi-mode magnetic induction communication (MMMIC) device with at least one antenna. The method further comprises identifying the type of device transmitting the detected signal. The method further comprises enabling the MMMIC device to communicate with the close proximity communication device at one of the distance of greater than the CPC detection perimeter and the distance of less than the CPC detection perimeter based on the type of device that is identified.
    Type: Application
    Filed: October 16, 2018
    Publication date: July 25, 2019
    Inventor: Douglas Howard DOBYNS
  • Publication number: 20190222262
    Abstract: Spatially Enabled Communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. A data block can be securely communicated by interspersing the data between an short range communication (SRC) device for near field magnetic induction (NFMI) communication within the proximity boundary and a radio frequency (RF) radio for RF communication. Data received on the SRC device and the RF radio can be reassembled to form the data block.
    Type: Application
    Filed: November 6, 2018
    Publication date: July 18, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190141503
    Abstract: Various embodiments of an invention for pairing a plurality of wireless devices using wireless communications is disclosed. A method for pairing a plurality of devices comprises attenuating a pairing signal emitted from a wireless device within a pairing enclosure during a pairing procedure. A power level of the pairing signal that is emitted through the pairing enclosure is received at a pairing signal receiver. The pairing procedure is permitted to continue when the power level of the pairing signal is less than a predetermined power level.
    Type: Application
    Filed: July 16, 2018
    Publication date: May 9, 2019
    Inventor: Douglas Howard Dobyns
  • Publication number: 20190140696
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device in the proximity boundary when the proximity signal is detected between the first SRC device and the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard.
    Type: Application
    Filed: July 27, 2018
    Publication date: May 9, 2019
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20190141476
    Abstract: A system and method for wireless communication of proximity based marketing is provided. The method includes determining whether a proximity device and a mobile computing device are within a first proximity to each other, wherein the proximity device is associated with at least one of a product and a service, and communicating information indicating that the proximity device and the mobile computing device are within the first proximity to each other, when it is determined that the proximity device and the mobile computing device are within the first proximity to each other.
    Type: Application
    Filed: June 11, 2018
    Publication date: May 9, 2019
    Inventor: Douglas Howard Dobyns
  • Patent number: 10259707
    Abstract: Exemplary embodiments of methods and systems for hydrogen production using an electro-activated material are provided. In some exemplary embodiments, carbon can be electro-activated and used in a chemical reaction with water and a fuel, such as aluminum, to generate hydrogen. Controlling the temperature of the reaction, and the amounts of water, aluminum and electro-activated carbon can provide hydrogen on demand at a desired rate of hydrogen generation.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: April 16, 2019
    Inventor: Douglas Howard Phillips
  • Patent number: 10164685
    Abstract: Technology for a spatially aware wireless network is disclosed. One embodiment comprises a plurality of near field magnetic induction nodes. One or more nodes is configured to communicate a polarized spatial position signal using near field magnetic induction (NFMI) to determine one or more of a position and an orientation of one or more nodes in the spatially aware wireless network. A detection module is operable to configure the spatially aware wireless network based one or more of a position and an orientation of one or more nodes in the plurality of nodes.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 25, 2018
    Assignee: FREELINC TECHNOLOGIES INC.
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Patent number: 10122414
    Abstract: Spatially Enabled Communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. A data block can be securely communicated by interspersing the data between an short range communication (SRC) device for near field magnetic induction (NFMI) communication within the proximity boundary and a radio frequency (RF) radio for RF communication. Data received on the SRC device and the RF radio can be reassembled to form the data block.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: November 6, 2018
    Assignee: FREELINC TECHNOLOGIES INC.
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Patent number: 10117050
    Abstract: A system and method for communication of proximity based content is disclosed between a mobile computing device having a Short Range Communication (SRC) device and a Proximity Short Range Communication (PSRC) device associated with a location or object using near field magnetic induction. The SRC device and/or the PSRC device can include at least two antennas to provide magnetic induction diversity. The method comprises defining a proximity boundary with dimensions defined by a magnetic induction diversity communication range of at least one of the SRC and PSRC devices. A proximity signal is communicated in the proximity boundary between the SRC device and the PSRC device. At least one action is performed by the mobile computing device or the PSRC device when the proximity signal is detected between the SRC device and the PSRC device.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 30, 2018
    Assignee: FREELINC TECHNOLOGIES INC.
    Inventor: Douglas Howard Dobyns
  • Patent number: 10103786
    Abstract: A method for close proximity communication is disclosed. The method comprises detecting a signal transmitted by a close proximity communication (CPC) device at one of a distance of greater than or less than a CPC detection perimeter with a multi-mode magnetic induction communication (MMMIC) device with at least one antenna. The method further comprises identifying the type of device transmitting the detected signal. The method further comprises enabling the MMMIC device to communicate with the close proximity communication device at one of the distance of greater than the CPC detection perimeter and the distance of less than the CPC detection perimeter based on the type of device that is identified.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: October 16, 2018
    Assignee: Freelinc Technologies Inc.
    Inventor: Douglas Howard Dobyns
  • Publication number: 20180278294
    Abstract: Spatially enabled secure communication technologies are disclosed. A proximity boundary can be defined by a communication range of one or more SRC devices configured to communicate using near field magnetic induction (NFMI) using at least two antennas to provide magnetic induction diversity. Secure data can be selected for NFMI communication on a spatially secure NFMI data link between the one or more SRC devices. Non-secure data can be selected for communication on one of a wireless local area network or a wireless wide area network.
    Type: Application
    Filed: October 3, 2017
    Publication date: September 27, 2018
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Patent number: 10084512
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device, wherein at least one of the first and second SRC devices includes at least two antennas to provide magnetic induction diversity. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device and the second SRC device using NFMI when the proximity signal is detected between the first SRC device and the second SRC device.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: September 25, 2018
    Assignee: FREELINC TECHNOLOGIES
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams