Patents by Inventor Douglas Alan Jones

Douglas Alan Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12025023
    Abstract: One or more cooling systems for ventilating a turbine and rotary shaft of a gas turbine system is provided. The gas turbine system includes a gas turbine engine and a turbine exhaust collector in separate enclosures. A first cooling system includes an educator that sucks exhaust gas through a diffuser and directs it out of the turbine exhaust collector enclosure based on suction pressure created from the high velocity of exhaust gas. A second cooling system include struts that enable the exhaust gas to flow from the diffusers to a ventilation flow stack. A third cooling system includes exhaust gas sucked from an opening to a top duct based on suction pressure created from the rotation of the rotary shaft disposed about a coupling. A guideway associated with the third cooling system also directs the exhaust gas to flow to the top duct.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: July 2, 2024
    Assignee: GE INFRASTRUCTURE TECHNOLOGY LLC
    Inventors: Ravinder Yerram, Balakrishnan Ponnuraj, Vineet Sethi, Jose Emmanuel Guillen, Tho Vankhanh Nguyen, Douglas Alan Jones, Abhinash Reddy Konatham
  • Patent number: 11578621
    Abstract: One or more cooling systems for ventilating a turbine and rotary shaft of a gas turbine system is provided. The gas turbine system includes a gas turbine engine and a turbine exhaust collector in separate enclosures. A first cooling system includes an educator that sucks exhaust gas through a diffuser and directs it out of the turbine exhaust collector enclosure based on suction pressure created from the high velocity of exhaust gas. A second cooling system include struts that enable the exhaust gas to flow from the diffusers to a ventilation flow stack. A third cooling system includes exhaust gas sucked from an opening to a top duct based on suction pressure created from the rotation of the rotary shaft disposed about a coupling. A guideway associated with the third cooling system also directs the exhaust gas to flow to the top duct.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: February 14, 2023
    Assignee: General Electric Company
    Inventors: Ravinder Yerram, Balakrishnan Ponnuraj, Vineet Sethi, Jose Emmanuel Guillen, Tho Vankhanh Nguyen, Douglas Alan Jones, Abhinash Reddy Konatham
  • Publication number: 20230045567
    Abstract: One or more cooling systems for ventilating a turbine and rotary shaft of a gas turbine system is provided. The gas turbine system includes a gas turbine engine and a turbine exhaust collector in separate enclosures. A first cooling system includes an educator that sucks exhaust gas through a diffuser and directs it out of the turbine exhaust collector enclosure based on suction pressure created from the high velocity of exhaust gas. A second cooling system include struts that enable the exhaust gas to flow from the diffusers to a ventilation flow stack. A third cooling system includes exhaust gas sucked from an opening to a top duct based on suction pressure created from the rotation of the rotary shaft disposed about a coupling. A guideway associated with the third cooling system also directs the exhaust gas to flow to the top duct.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 9, 2023
    Inventors: Ravinder Yerram, Balakrishnan Ponnuraj, Vineet Sethi, Jose Emmanuel Guillen, Tho Vankhanh Nguyen, Douglas Alan Jones, Abhinash Reddy Konatham
  • Patent number: 11473495
    Abstract: A system includes a clutchless synchronous condensing coupling configured to couple a turbine shaft of a gas turbine system to a generator shaft of a synchronous generator of a power generation system. The clutchless synchronous condensing coupling includes a first coupling portion configured to couple to the turbine shaft, and a second coupling portion configured to couple to the generator shaft. The clutchless synchronous condensing coupling is configured to allow the power generation system to operate in an active power mode and a reactive power mode without a clutch assembly.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: October 18, 2022
    Assignee: General Electric Company
    Inventors: Vineet Sethi, Randall John Kleen, Tho Vankhanh Nguyen, Douglas Alan Jones
  • Patent number: 11396071
    Abstract: A method of manufacturing a shim and related systems and equipment. A mechanical tool inserted into a shim space defined between two or more components with the mechanical tool in a first configuration. The mechanical tool is free of measurement electronics. The mechanical tool, while in the shim space, is modified such that the mechanical tool assumes a second configuration to establish a plurality of model points corresponding to a boundary surface of the shim space. The mechanical tool is removed from the shim space while maintaining the mechanical tool in the second configuration. Using a measurement station distinct from the tool, the positions of the model points are electronically measured while the mechanical tool is both disposed outside of the shim space and in the second configuration. Machining instructions are generated based on the measured positions. A shim is fabricated based on the generated machining instructions.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: July 26, 2022
    Assignee: The Boeing Company
    Inventors: Nathan Alphonse Secinaro, Douglas Alan Jones, Brent F. Craig
  • Publication number: 20210317784
    Abstract: One or more cooling systems for ventilating a turbine and rotary shaft of a gas turbine system is provided. The gas turbine system includes a gas turbine engine and a turbine exhaust collector in separate enclosures. A first cooling system includes an educator that sucks exhaust gas through a diffuser and directs it out of the turbine exhaust collector enclosure based on suction pressure created from the high velocity of exhaust gas. A second cooling system include struts that enable the exhaust gas to flow from the diffusers to a ventilation flow stack. A third cooling system includes exhaust gas sucked from an opening to a top duct based on suction pressure created from the rotation of the rotary shaft disposed about a coupling. A guideway associated with the third cooling system also directs the exhaust gas to flow to the top duct.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 14, 2021
    Inventors: Ravinder Yerram, Balakrishnan Ponnuraj, Vineet Sethi, Jose Emmanuel Guillen, Tho Vankhanh Nguyen, Douglas Alan Jones, Abhinash Reddy Konatham
  • Publication number: 20210317781
    Abstract: A system includes a clutchless synchronous condensing coupling configured to couple a turbine shaft of a gas turbine system to a generator shaft of a synchronous generator of a power generation system. The clutchless synchronous condensing coupling includes a first coupling portion configured to couple to the turbine shaft, and a second coupling portion configured to couple to the generator shaft. The clutchless synchronous condensing coupling is configured to allow the power generation system to operate in an active power mode and a reactive power mode without a clutch assembly.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 14, 2021
    Inventors: Vineet Sethi, Randall John Kleen, Tho Vankhanh Nguyen, Douglas Alan Jones
  • Publication number: 20200290163
    Abstract: A method of manufacturing a shim and related systems and equipment. A mechanical tool inserted into a shim space defined between two or more components with the mechanical tool in a first configuration. The mechanical tool is free of measurement electronics. The mechanical tool, while in the shim space, is modified such that the mechanical tool assumes a second configuration to establish a plurality of model points corresponding to a boundary surface of the shim space. The mechanical tool is removed from the shim space while maintaining the mechanical tool in the second configuration. Using a measurement station distinct from the tool, the positions of the model points are electronically measured while the mechanical tool is both disposed outside of the shim space and in the second configuration. Machining instructions are generated based on the measured positions. A shim is fabricated based on the generated machining instructions.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Nathan Alphonse Secinaro, Douglas Alan Jones, Brent F. Craig
  • Patent number: 10704467
    Abstract: The present application provides a thermal storage system for use with a gas turbine engine having an intercooler. The thermal storage system may include a secondary cooler in communication with the intercooler, a thermal energy storage tank in communication with the secondary cooler and the intercooler, and a temperature conditioning device positioned about the gas turbine engine and in communication with the thermal energy storage tank.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: July 7, 2020
    Assignee: General Electric Company
    Inventors: Douglas Alan Jones, Ching-Jen Tang
  • Publication number: 20180313270
    Abstract: The present application provides a thermal storage system for use with a gas turbine engine having an intercooler. The thermal storage system may include a secondary cooler in communication with the intercooler, a thermal energy storage tank in communication with the secondary cooler and the intercooler, and a temperature conditioning device positioned about the gas turbine engine and in communication with the thermal energy storage tank.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 1, 2018
    Inventors: Douglas Alan Jones, Ching-Jen Tang
  • Patent number: 9541197
    Abstract: A system including a seal is provided. The seal includes a first layer made of a first non-metallic, elastic material. The seal further includes a second layer made of a second non-metallic, heat resistant material. The second layer is configured to thermally protect the first layer from heat. The seal is configured to extend across a gap between first and second surfaces, and the first and second layers are formed into a bended structure configured to expand and contract in response to a dimensional change in the gap.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 10, 2017
    Assignee: General Electric Company
    Inventors: Gerardo Plata Contreras, Douglas Alan Jones, Sofia Cayón Aguilar
  • Patent number: 8899008
    Abstract: A system includes an anti-icing heat recovery system, which includes a first heat exchanger, a second heat exchanger, and a variable speed fan. The first heat exchanger is configured to receive a working fluid from an exhaust section of a gas turbine engine and to transfer heat from the working fluid to a cooled intermediate heat transfer medium to generate a heated intermediate heat transfer medium. The second heat exchanger is configured to receive the heated intermediate heat transfer medium from the first heat exchanger and to transfer heat from the heated intermediate heat transfer medium to air entering the gas turbine engine. The variable speed fan is configured to urge the working fluid from the exhaust section of the gas turbine engine through the first heat exchanger.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: December 2, 2014
    Assignee: General Electric Company
    Inventors: Douglas Alan Jones, Gerardo Plata Contreras, Robert Allen Baten, Victor Gerardo Cabal Velarde, Jingmei Zhang, Jesus Elios Almendarez Mendez, Richard Michael Watkins
  • Patent number: 8813503
    Abstract: Methods and systems for controlling a gas turbine system are provided herein. In one embodiment, a method includes the steps of receiving at least one parameter of turbine inlet air and determining, based on the at least one parameter, an expected condensation level at an intercooler disposed downstream of an inlet air chilling system and in-line between a low pressure compressor and a high pressure compressor. The method further includes determining a desired temperature of the turbine inlet air corresponding to substantially no expected condensation at the intercooler and controlling the inlet air chilling system to chill the turbine inlet air to the desired temperature.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: August 26, 2014
    Assignee: General Electric Company
    Inventor: Douglas Alan Jones
  • Publication number: 20130333393
    Abstract: Methods and systems for controlling a gas turbine system are provided herein. In one embodiment, a method includes the steps of receiving at least one parameter of turbine inlet air and determining, based on the at least one parameter, an expected condensation level at an intercooler disposed downstream of an inlet air chilling system and in-line between a low pressure compressor and a high pressure compressor. The method further includes determining a desired temperature of the turbine inlet air corresponding to substantially no expected condensation at the intercooler and controlling the inlet air chilling system to chill the turbine inlet air to the desired temperature.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: General Electric Company
    Inventor: Douglas Alan Jones
  • Publication number: 20130305737
    Abstract: A system includes an anti-icing heat recovery system, which includes a first heat exchanger, a second heat exchanger, and a variable speed fan. The first heat exchanger is configured to receive a working fluid from an exhaust section of a gas turbine engine and to transfer heat from the working fluid to a cooled intermediate heat transfer medium to generate a heated intermediate heat transfer medium. The second heat exchanger is configured to receive the heated intermediate heat transfer medium from the first heat exchanger and to transfer heat from the heated intermediate heat transfer medium to air entering the gas turbine engine. The variable speed fan is configured to urge the working fluid from the exhaust section of the gas turbine engine through the first heat exchanger.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Douglas Alan Jones, Gerardo Plata Contreras, Robert Allen Baten, Victor Gerardo Cabal Velarde, Jingmei Zhang, Jesus Elios Almendarez Mendez, Richard Michael Watkins
  • Publication number: 20120306164
    Abstract: A system including a seal is provided. The seal includes a first layer made of a first non-metallic, elastic material. The seal further includes a second layer made of a second non-metallic, heat resistant material. The second layer is configured to thermally protect the first layer from heat. The seal is configured to extend across a gap between first and second surfaces, and the first and second layers are formed into a bended structure configured to expand and contract in response to a dimensional change in the gap.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: General Electric Company
    Inventors: Gerardo Plata Contreras, Douglas Alan Jones, Sofia Cayón Aguilar