Patents by Inventor Douglas Alan Jones
Douglas Alan Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12025023Abstract: One or more cooling systems for ventilating a turbine and rotary shaft of a gas turbine system is provided. The gas turbine system includes a gas turbine engine and a turbine exhaust collector in separate enclosures. A first cooling system includes an educator that sucks exhaust gas through a diffuser and directs it out of the turbine exhaust collector enclosure based on suction pressure created from the high velocity of exhaust gas. A second cooling system include struts that enable the exhaust gas to flow from the diffusers to a ventilation flow stack. A third cooling system includes exhaust gas sucked from an opening to a top duct based on suction pressure created from the rotation of the rotary shaft disposed about a coupling. A guideway associated with the third cooling system also directs the exhaust gas to flow to the top duct.Type: GrantFiled: October 18, 2022Date of Patent: July 2, 2024Assignee: GE INFRASTRUCTURE TECHNOLOGY LLCInventors: Ravinder Yerram, Balakrishnan Ponnuraj, Vineet Sethi, Jose Emmanuel Guillen, Tho Vankhanh Nguyen, Douglas Alan Jones, Abhinash Reddy Konatham
-
Patent number: 11578621Abstract: One or more cooling systems for ventilating a turbine and rotary shaft of a gas turbine system is provided. The gas turbine system includes a gas turbine engine and a turbine exhaust collector in separate enclosures. A first cooling system includes an educator that sucks exhaust gas through a diffuser and directs it out of the turbine exhaust collector enclosure based on suction pressure created from the high velocity of exhaust gas. A second cooling system include struts that enable the exhaust gas to flow from the diffusers to a ventilation flow stack. A third cooling system includes exhaust gas sucked from an opening to a top duct based on suction pressure created from the rotation of the rotary shaft disposed about a coupling. A guideway associated with the third cooling system also directs the exhaust gas to flow to the top duct.Type: GrantFiled: April 8, 2020Date of Patent: February 14, 2023Assignee: General Electric CompanyInventors: Ravinder Yerram, Balakrishnan Ponnuraj, Vineet Sethi, Jose Emmanuel Guillen, Tho Vankhanh Nguyen, Douglas Alan Jones, Abhinash Reddy Konatham
-
Publication number: 20230045567Abstract: One or more cooling systems for ventilating a turbine and rotary shaft of a gas turbine system is provided. The gas turbine system includes a gas turbine engine and a turbine exhaust collector in separate enclosures. A first cooling system includes an educator that sucks exhaust gas through a diffuser and directs it out of the turbine exhaust collector enclosure based on suction pressure created from the high velocity of exhaust gas. A second cooling system include struts that enable the exhaust gas to flow from the diffusers to a ventilation flow stack. A third cooling system includes exhaust gas sucked from an opening to a top duct based on suction pressure created from the rotation of the rotary shaft disposed about a coupling. A guideway associated with the third cooling system also directs the exhaust gas to flow to the top duct.Type: ApplicationFiled: October 18, 2022Publication date: February 9, 2023Inventors: Ravinder Yerram, Balakrishnan Ponnuraj, Vineet Sethi, Jose Emmanuel Guillen, Tho Vankhanh Nguyen, Douglas Alan Jones, Abhinash Reddy Konatham
-
Patent number: 11473495Abstract: A system includes a clutchless synchronous condensing coupling configured to couple a turbine shaft of a gas turbine system to a generator shaft of a synchronous generator of a power generation system. The clutchless synchronous condensing coupling includes a first coupling portion configured to couple to the turbine shaft, and a second coupling portion configured to couple to the generator shaft. The clutchless synchronous condensing coupling is configured to allow the power generation system to operate in an active power mode and a reactive power mode without a clutch assembly.Type: GrantFiled: April 9, 2020Date of Patent: October 18, 2022Assignee: General Electric CompanyInventors: Vineet Sethi, Randall John Kleen, Tho Vankhanh Nguyen, Douglas Alan Jones
-
Patent number: 11396071Abstract: A method of manufacturing a shim and related systems and equipment. A mechanical tool inserted into a shim space defined between two or more components with the mechanical tool in a first configuration. The mechanical tool is free of measurement electronics. The mechanical tool, while in the shim space, is modified such that the mechanical tool assumes a second configuration to establish a plurality of model points corresponding to a boundary surface of the shim space. The mechanical tool is removed from the shim space while maintaining the mechanical tool in the second configuration. Using a measurement station distinct from the tool, the positions of the model points are electronically measured while the mechanical tool is both disposed outside of the shim space and in the second configuration. Machining instructions are generated based on the measured positions. A shim is fabricated based on the generated machining instructions.Type: GrantFiled: March 13, 2019Date of Patent: July 26, 2022Assignee: The Boeing CompanyInventors: Nathan Alphonse Secinaro, Douglas Alan Jones, Brent F. Craig
-
Publication number: 20210317784Abstract: One or more cooling systems for ventilating a turbine and rotary shaft of a gas turbine system is provided. The gas turbine system includes a gas turbine engine and a turbine exhaust collector in separate enclosures. A first cooling system includes an educator that sucks exhaust gas through a diffuser and directs it out of the turbine exhaust collector enclosure based on suction pressure created from the high velocity of exhaust gas. A second cooling system include struts that enable the exhaust gas to flow from the diffusers to a ventilation flow stack. A third cooling system includes exhaust gas sucked from an opening to a top duct based on suction pressure created from the rotation of the rotary shaft disposed about a coupling. A guideway associated with the third cooling system also directs the exhaust gas to flow to the top duct.Type: ApplicationFiled: April 8, 2020Publication date: October 14, 2021Inventors: Ravinder Yerram, Balakrishnan Ponnuraj, Vineet Sethi, Jose Emmanuel Guillen, Tho Vankhanh Nguyen, Douglas Alan Jones, Abhinash Reddy Konatham
-
Publication number: 20210317781Abstract: A system includes a clutchless synchronous condensing coupling configured to couple a turbine shaft of a gas turbine system to a generator shaft of a synchronous generator of a power generation system. The clutchless synchronous condensing coupling includes a first coupling portion configured to couple to the turbine shaft, and a second coupling portion configured to couple to the generator shaft. The clutchless synchronous condensing coupling is configured to allow the power generation system to operate in an active power mode and a reactive power mode without a clutch assembly.Type: ApplicationFiled: April 9, 2020Publication date: October 14, 2021Inventors: Vineet Sethi, Randall John Kleen, Tho Vankhanh Nguyen, Douglas Alan Jones
-
Publication number: 20200290163Abstract: A method of manufacturing a shim and related systems and equipment. A mechanical tool inserted into a shim space defined between two or more components with the mechanical tool in a first configuration. The mechanical tool is free of measurement electronics. The mechanical tool, while in the shim space, is modified such that the mechanical tool assumes a second configuration to establish a plurality of model points corresponding to a boundary surface of the shim space. The mechanical tool is removed from the shim space while maintaining the mechanical tool in the second configuration. Using a measurement station distinct from the tool, the positions of the model points are electronically measured while the mechanical tool is both disposed outside of the shim space and in the second configuration. Machining instructions are generated based on the measured positions. A shim is fabricated based on the generated machining instructions.Type: ApplicationFiled: March 13, 2019Publication date: September 17, 2020Inventors: Nathan Alphonse Secinaro, Douglas Alan Jones, Brent F. Craig
-
Patent number: 10704467Abstract: The present application provides a thermal storage system for use with a gas turbine engine having an intercooler. The thermal storage system may include a secondary cooler in communication with the intercooler, a thermal energy storage tank in communication with the secondary cooler and the intercooler, and a temperature conditioning device positioned about the gas turbine engine and in communication with the thermal energy storage tank.Type: GrantFiled: April 27, 2017Date of Patent: July 7, 2020Assignee: General Electric CompanyInventors: Douglas Alan Jones, Ching-Jen Tang
-
Publication number: 20180313270Abstract: The present application provides a thermal storage system for use with a gas turbine engine having an intercooler. The thermal storage system may include a secondary cooler in communication with the intercooler, a thermal energy storage tank in communication with the secondary cooler and the intercooler, and a temperature conditioning device positioned about the gas turbine engine and in communication with the thermal energy storage tank.Type: ApplicationFiled: April 27, 2017Publication date: November 1, 2018Inventors: Douglas Alan Jones, Ching-Jen Tang
-
Patent number: 9541197Abstract: A system including a seal is provided. The seal includes a first layer made of a first non-metallic, elastic material. The seal further includes a second layer made of a second non-metallic, heat resistant material. The second layer is configured to thermally protect the first layer from heat. The seal is configured to extend across a gap between first and second surfaces, and the first and second layers are formed into a bended structure configured to expand and contract in response to a dimensional change in the gap.Type: GrantFiled: June 1, 2011Date of Patent: January 10, 2017Assignee: General Electric CompanyInventors: Gerardo Plata Contreras, Douglas Alan Jones, Sofia Cayón Aguilar
-
Patent number: 8899008Abstract: A system includes an anti-icing heat recovery system, which includes a first heat exchanger, a second heat exchanger, and a variable speed fan. The first heat exchanger is configured to receive a working fluid from an exhaust section of a gas turbine engine and to transfer heat from the working fluid to a cooled intermediate heat transfer medium to generate a heated intermediate heat transfer medium. The second heat exchanger is configured to receive the heated intermediate heat transfer medium from the first heat exchanger and to transfer heat from the heated intermediate heat transfer medium to air entering the gas turbine engine. The variable speed fan is configured to urge the working fluid from the exhaust section of the gas turbine engine through the first heat exchanger.Type: GrantFiled: May 15, 2012Date of Patent: December 2, 2014Assignee: General Electric CompanyInventors: Douglas Alan Jones, Gerardo Plata Contreras, Robert Allen Baten, Victor Gerardo Cabal Velarde, Jingmei Zhang, Jesus Elios Almendarez Mendez, Richard Michael Watkins
-
Patent number: 8813503Abstract: Methods and systems for controlling a gas turbine system are provided herein. In one embodiment, a method includes the steps of receiving at least one parameter of turbine inlet air and determining, based on the at least one parameter, an expected condensation level at an intercooler disposed downstream of an inlet air chilling system and in-line between a low pressure compressor and a high pressure compressor. The method further includes determining a desired temperature of the turbine inlet air corresponding to substantially no expected condensation at the intercooler and controlling the inlet air chilling system to chill the turbine inlet air to the desired temperature.Type: GrantFiled: June 14, 2012Date of Patent: August 26, 2014Assignee: General Electric CompanyInventor: Douglas Alan Jones
-
Publication number: 20130333393Abstract: Methods and systems for controlling a gas turbine system are provided herein. In one embodiment, a method includes the steps of receiving at least one parameter of turbine inlet air and determining, based on the at least one parameter, an expected condensation level at an intercooler disposed downstream of an inlet air chilling system and in-line between a low pressure compressor and a high pressure compressor. The method further includes determining a desired temperature of the turbine inlet air corresponding to substantially no expected condensation at the intercooler and controlling the inlet air chilling system to chill the turbine inlet air to the desired temperature.Type: ApplicationFiled: June 14, 2012Publication date: December 19, 2013Applicant: General Electric CompanyInventor: Douglas Alan Jones
-
Publication number: 20130305737Abstract: A system includes an anti-icing heat recovery system, which includes a first heat exchanger, a second heat exchanger, and a variable speed fan. The first heat exchanger is configured to receive a working fluid from an exhaust section of a gas turbine engine and to transfer heat from the working fluid to a cooled intermediate heat transfer medium to generate a heated intermediate heat transfer medium. The second heat exchanger is configured to receive the heated intermediate heat transfer medium from the first heat exchanger and to transfer heat from the heated intermediate heat transfer medium to air entering the gas turbine engine. The variable speed fan is configured to urge the working fluid from the exhaust section of the gas turbine engine through the first heat exchanger.Type: ApplicationFiled: May 15, 2012Publication date: November 21, 2013Applicant: GENERAL ELECTRIC COMPANYInventors: Douglas Alan Jones, Gerardo Plata Contreras, Robert Allen Baten, Victor Gerardo Cabal Velarde, Jingmei Zhang, Jesus Elios Almendarez Mendez, Richard Michael Watkins
-
Publication number: 20120306164Abstract: A system including a seal is provided. The seal includes a first layer made of a first non-metallic, elastic material. The seal further includes a second layer made of a second non-metallic, heat resistant material. The second layer is configured to thermally protect the first layer from heat. The seal is configured to extend across a gap between first and second surfaces, and the first and second layers are formed into a bended structure configured to expand and contract in response to a dimensional change in the gap.Type: ApplicationFiled: June 1, 2011Publication date: December 6, 2012Applicant: General Electric CompanyInventors: Gerardo Plata Contreras, Douglas Alan Jones, Sofia Cayón Aguilar