Patents by Inventor Douglas Allen Stanton

Douglas Allen Stanton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11826107
    Abstract: A registration system for medical navigation includes a shape sensing device (SSD) (104, 504) having at least one sensor (450, 505) for providing corresponding sensor information (SI) indicative of at least one of a position of the at least one sensor (450, 505); a registration fixture (106) having a channel (130) configured to receive at least part of the SSD and defining a registration path (P). The registration fixture may be configured to be attached to a registrant object (RO) (119) defining a workspace. A controller (110) may be configured to: sense a shape of a path traversed by the SSD based upon the SI when the at least one sensor is situated within the channel (130), determine whether the sensed shape of the path corresponds with a known shape selected from one or more known shapes, and perform a coordinate registration based upon the determination.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: November 28, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul Thienphrapa, Bharat Ramachandran, Aryeh Leib Reinstein, Douglas Allen Stanton
  • Patent number: 11576728
    Abstract: An interventional tool stepper (30) employing a frame (31), a carriage (33), an optional gear assembly (32), and an optional grid template(34). The frame (31) is structurally configured to be positioned relative to an anatomical region for holding an interventional tool (40) relative to the anatomical region. The carriage (33) is structurally configured to hold the interventional tool (40) relative to the anatomical region. The gear assembly (32) is structurally configured to translate and/or rotate the carriage (33) relative to the frame (31). The grid template (34) is structurally configured to guide one or more additional interventional tools (41) relative to the anatomical region. The frame (31), the carriage (33), the optional gear assembly (32) and the optional grid template (34) have an electromagnetic-compatible material composition for minimizing any distortion by the interventional tool stepper (30) of an electromagnetic field.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: February 14, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Cynthia Ming-Fu Kung, Shriram Sethuraman, Douglas Allen Stanton, Jochen Kruecker
  • Publication number: 20220370035
    Abstract: An apparatus for performing a medical procedure is disclosed. The apparatus includes a sensor adapted to convert an ultrasonic signal incident thereon into an electrical signal; and a wireless transceiver configured to receive the electrical signal from the sensor, and to transmit the electrical signal to a wireless receiver remotely located from the apparatus.
    Type: Application
    Filed: August 5, 2022
    Publication date: November 24, 2022
    Inventors: Kunal VAIDYA, Ramon Quido ERKAMP, Shyam BHARAT, Ameet Kumar JAIN, Douglas Allen STANTON, Francois Guy Gerard Marie VIGNON
  • Patent number: 11439363
    Abstract: An apparatus for performing a medical procedure is disclosed. The apparatus includes a sensor adapted to convert an ultrasonic signal incident thereon into an electrical signal; and a wireless transceiver configured to receive the electrical signal from the sensor, and to transmit the electrical signal to a wireless receiver remotely located from the apparatus.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 13, 2022
    Assignee: KONINKLIJIKE PHILIPS N.V.
    Inventors: Kunal Vaidya, Ramon Quido Erkamp, Shyam Bharat, Ameet Kumar Jain, Douglas Allen Stanton, Francois Guy Gerard Marie Vignon
  • Patent number: 11166697
    Abstract: An ultrasound system employs an ultrasound probe (31), a strain sensor (33) and a workstation (20). The ultrasound probe (31) includes an ultrasound transducer for acquiring ultrasound images (40) of an anatomical region. The strain sensor (33) is arranged on the ultrasound probe (31) to measure a longitudinal strain applied by the anatomical region to the ultrasound probe (31) as the ultrasound transducer acquires ultrasound images (40) of the anatomical region. The strain sensor (33) encircles a longitudinal axis of the ultrasound probe (31) and is spaced from the ultrasound transducers relative to the longitudinal axis of the ultrasound probe (31).
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: November 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Amir Mohammed Tahmasebi Maraghoosh, Mahmoudreza Sharifi, Douglas Allen Stanton
  • Patent number: 11006923
    Abstract: An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of needle insertion into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 18, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Lee Andrews, Vijay Parthasarathy, Gary Cheng-How Ng, Douglas Allen Stanton, Andrew Lee Robinson, Jochen Kruecker, Christopher Stephen Hall, James Robertson Jago, Vijay Shamdasani
  • Patent number: 10786310
    Abstract: An electromagnetic (“EM”) tracking configuration system employs an EM quality assurance (“EMQA”) (30) and EM data coordination (“DC”) system (70). For the EMQA system (30), an EM sensor block (40) includes EM sensor(s) (22) positioned and oriented to represent a simulated electromagnetic tracking of interventional tool(s) inserted through electromagnetic sensor block (40) into an anatomical region. As an EM field generator (20) generates an EM field (21) encircling EM sensor(s) (22), an EMQA workstation (50) tests an EM tracking accuracy of an insertion of the interventional tool(s) through the EM sensor block (40) into the anatomical region.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 29, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Cynthia Ming-Fu Kung, Amir Mohammad Tahmasebi Maraghoosh, Sandeep M. Dalal, Jochen Kruecker, Antonio Bonillas Vaca, Douglas Allen Stanton
  • Publication number: 20200008776
    Abstract: An apparatus for performing a medical procedure is disclosed. The apparatus includes a sensor adapted to convert an ultrasonic signal incident thereon into an electrical signal; and a wireless transceiver configured to receive the electrical signal from the sensor, and to transmit the electrical signal to a wireless receiver remotely located from the apparatus.
    Type: Application
    Filed: November 6, 2017
    Publication date: January 9, 2020
    Inventors: KUNAL VAIDYA, RAMON QUIDO ERKAMP, SHYAM BHARAT, AMEET KUMAR JAIN, DOUGLAS ALLEN STANTON, FRANCOIS GUY GERARD MARIE VIGNON
  • Patent number: 10414054
    Abstract: A force feedback gripping device employs a mechanical gripper (23), an electromagnetic actuator (22) and a force feedback controller (21). The mechanical gripper (23) is operable to be actuated to one of a plurality of gripping poses for gripping an object. The electromagnetic actuator (22) includes a magnetorheological elastomer (“MRE”), wherein the MRE is operable to be transitioned between a plurality of shapes dependent upon a variable strength of a magnetic field applied to the MRE, and wherein each shape of the MRE actuates the mechanical gripper (23) to one of the gripping poses. The force feedback controller (21) is operable to control the variable strength of the magnetic field applied to the MRE based on an estimation of a gripping force of the mechanical gripper (23) and on a sensing of a load force of the object responsive to the gripping force of the mechanical gripper (23).
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: September 17, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Aleksandra Popovic, Sitharthan Kamalakaran, Douglas Allen Stanton
  • Publication number: 20190000562
    Abstract: A registration system for medical navigation includes a shape sensing device (SSD) (104, 504) having at least one sensor (450, 505) for providing corresponding sensor information (SI) indicative of at least one of a position of the at least one sensor (450, 505); a registration fixture (106) having a channel (130) configured to receive at least part of the SSD and defining a registration path (P). The registration fixture may be configured to be attached to a registrant object (RO) (119) defining a workspace. A controller (110) may be configured to: sense a shape of a path traversed by the SSD based upon the SI when the at least one sensor is situated within the channel (130), determine whether the sensed shape of the path corresponds with a known shape selected from one or more known shapes, and perform a coordinate registration based upon the determination.
    Type: Application
    Filed: December 16, 2016
    Publication date: January 3, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: PAUL THIENPHRAPA, BHARAT RAMACHANDRAN, ARYEH LEIB REINSTEIN, DOUGLAS ALLEN STANTON
  • Patent number: 10123767
    Abstract: An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of the insertion of multiple needles into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: November 13, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Lee Andrews, Vijay Parthasarathy, Gary Cheng-How Ng, Douglas Allen Stanton, Andrew Lee Robinson, Jochen Kruecker
  • Publication number: 20170014192
    Abstract: An electromagnetic (“EM”) tracking configuration system employs an EM quality assurance (“EMQA”) (30) and EM data coordination (“DC”) system (70). For the EMQA system (30), an EM sensor block (40) includes EM sensor(s) (22) positioned and oriented to represent a simulated electromagnetic tracking of interventional tool(s) inserted through electromagnetic sensor block (40) into an anatomical region. As an EM field generator (20) generates an EM field (21) encircling EM sensor(s) (22), an EMQA workstation (50) tests an EM tracking accuracy of an insertion of the interventional tool(s) through the EM sensor block (40) into the anatomical region.
    Type: Application
    Filed: March 17, 2015
    Publication date: January 19, 2017
    Inventors: SHYAM BHARAT, EHSAN DEHGHAN MARVAST, CYNTHIA MING-FU KUNG, AMIR MOHAMMAD TAHMASEBI MARAGHOOSHMEL, SANDEEP M. DALAL, JOCHEN KRUECKER, ANTONIO BONILLAS VACA, DOUGLAS ALLEN STANTON
  • Publication number: 20160206382
    Abstract: An interventional tool stepper (30) employing a frame (31), a carriage (33), an optional gear assembly (32), and an optional grid template(34). The frame (31) is structurally configured to be positioned relative to an anatomical region for holding an interventional tool (40) relative to the anatomical region. The carriage (33) is structurally configured to hold the interventional tool (40) relative to the anatomical region. The gear assembly (32) is structurally configured to translate and/or rotate the carriage (33) relative to the frame (31). The grid template (34) is structurally configured to guide one or more additional interventional tools (41) relative to the anatomical region. The frame (31), the carriage (33), the optional gear assembly (32) and the optional grid template (34) have an electromagnetic-compatible material composition for minimizing any distortion by the interventional tool stepper (30) of an electromagnetic field.
    Type: Application
    Filed: September 18, 2014
    Publication date: July 21, 2016
    Inventors: SHYAM BHARAT, EHSAN DEHGHAN MARVAST, CYNTHIA MING-FU KUNG, SHRIRAM SETHURAMAN, DOUGLAS ALLEN STANTON, JOCHEN KRUECKER
  • Publication number: 20160031091
    Abstract: A force feedback gripping device employs a mechanical gripper (23), an electromagnetic actuator (22) and a force feedback controller (21). The mechanical gripper (23) is operable to be actuated to one of a plurality of gripping poses for gripping an object. The electromagnetic actuator (22) includes a magnetorheological elastomer (“MRE”), wherein the MRE is operable to be transitioned between a plurality of shapes dependent upon a variable strength of a magnetic field applied to the MRE, and wherein each shape of the MRE actuates the mechanical gripper (23) to one of the gripping poses. The force feedback controller (21) is operable to control the variable strength of the magnetic field applied to the MRE based on an estimation of a gripping force of the mechanical gripper (23) and on a sensing of a load force of the object responsive to the gripping force of the mechanical gripper (23).
    Type: Application
    Filed: October 22, 2014
    Publication date: February 4, 2016
    Inventors: ALEKSANDRA POPOVIC, SITHARTHAN KAMALAKARAN, DOUGLAS ALLEN STANTON
  • Publication number: 20160015363
    Abstract: An ultrasound system employs an ultrasound probe (31), a strain sensor(33) and a workstation (20). The ultrasound probe (31) includes an ultrasound transducer for acquiring ultrasound images (40) of an anatomical region. The strain sensor(33) is arranged on the ultrasound probe (31) to measure a longitudinal strain applied by the anatomical region to the ultrasound probe (31) as the ultrasound transducer acquires ultrasound images (40) of the anatomical region. The strain sensor(33) encircles a longitudinal axis of the ultrasound probe (31) and is spaced from the ultrasound transducers relative to the longitudinal axis of the ultrasound probe (31).
    Type: Application
    Filed: March 27, 2014
    Publication date: January 21, 2016
    Inventors: Amir Mohammed TAHMASEBI MARAGHOOSH, Mahmoudreza SHARIFI, Douglas Allen STANTON
  • Publication number: 20150320439
    Abstract: An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of needle insertion into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 12, 2015
    Inventors: GARY LEE ANDREWS, VIJAY PARTHASARATHY, GARY CHENG-HOW NG, DOUGLAS ALLEN STANTON, ANDREW LEE ROBINSON, JOCHEN KRUECKER, CHRISTOPHER STEPHEN HALL, JAMES ROBERTSON JAGO, VIJAY SHAMDASANI
  • Publication number: 20150173706
    Abstract: An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of the insertion of multiple needles into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.
    Type: Application
    Filed: June 18, 2013
    Publication date: June 25, 2015
    Inventors: Gary Lee Andrews, Vijay Parthasarathy, Gary Cheng-How NG, Douglas Allen Stanton, Andrew Lee Robinson, Jochen Kruecker
  • Publication number: 20140100452
    Abstract: The present invention relates to an ultrasound-image-guided system and to a volume-motion-based calibration method for operating such system. The system comprises one or more ultrasound probes (20) operable to generate image volumes (13i, 13j) of an anatomical object (10). The system further comprises an adapter device (50) comprising at least one position sensor (30), the adapter device (50) being, for one use event, attachable to one of the ultrasound probes (20). The at least one position sensor (30) is at a variable position with respect to the one or more ultrasound probes (20) from one use event to another use event. The system further comprises a tracking device (51) operable to generate tracking data (32) representative of a tracking of the at least one position sensor (30) within a coordinate system (11), and ultrasound imaging device (21) operable to generate imaging data (22) of the anatomical object (10) based on the image volumes (13i, 13j).
    Type: Application
    Filed: June 21, 2012
    Publication date: April 10, 2014
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Armeet Kumar Jain, Douglas Allen Stanton, Christopher Stephen Hall