Patents by Inventor Douglas B. Chrisey

Douglas B. Chrisey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8786140
    Abstract: A magnetohydrodynamic energy conversion device with an electrically conductive working fluid flowing through a conduit in a magnetic field has permanent magnets aligned for maximum field density for inducing an electric current in the fluid and a multistage cooling system for cryogenically cooling the magnets whereby heat is removed from the device at successive cooling stages having respective different coolants, e.g., water, liquid nitrogen and liquid helium, to maintain the magnets at temperatures low enough to produce high tesla magnetic flux densities in the presence of a high temperature working fluid.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 22, 2014
    Inventors: Thomas P. Kay, Douglas B. Chrisey, Yoav Peles
  • Publication number: 20110241448
    Abstract: A magnetohydrodynamic energy conversion device with an electrically conductive working fluid flowing through a conduit in a magnetic field has permanent magnets aligned for maximum field density for inducing an electric current in the fluid and a multistage cooling system for cryogenically cooling the magnets whereby heat is removed from the device at successive cooling stages having respective different coolants, e.g., water, liquid nitrogen and liquid helium, to maintain the magnets at temperatures low enough to produce high tesla magnetic flux densities in the presence of a high temperature working fluid.
    Type: Application
    Filed: March 3, 2011
    Publication date: October 6, 2011
    Inventors: Thomas P. Kay, Douglas B. Chrisey, Yoav Peles
  • Patent number: 7014885
    Abstract: A device and method for depositing a material of interest onto a receiving substrate includes a first laser and a second laser, a receiving substrate, and a target substrate. The target substrate comprises a laser transparent support having a back surface and a front surface. The front surface has a coating that comprises the source material, which is a material that can be transformed into the material of interest. The first laser can be positioned in relation to the target substrate so that a laser beam is directed through the back surface of the target substrate and through the laser-transparent support to strike the coating at a defined location with sufficient energy to remove and lift the source material from the surface of the support. The receiving substrate can be positioned in a spaced relation to the target substrate so that the source material is deposited at a defined location on the receiving substrate.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: March 21, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alberto Piqué, Raymond Auyeung, James Fitzgerald, Douglas B. Chrisey, Huey-Daw Wu, Paul Kydd, David L. Richard
  • Patent number: 7001467
    Abstract: A device and method for depositing a material of interest onto a receiving substrate includes a first laser and a second laser, a receiving substrate, and a target substrate. The target substrate comprises a laser transparent support having a back surface and a front surface. The front surface has a coating that comprises the source material, which is a material that can be transformed into the material of interest. The first laser can be positioned in relation to the target substrate so that a laser beam is directed through the back surface of the target substrate and through the laser-transparent support to strike the coating at a defined location with sufficient energy to remove and lift the source material from the surface of the support. The receiving substrate can be positioned in a spaced relation to the target substrate so that the source material is deposited at a defined location on the receiving substrate.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: February 21, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alberto Piqué, Raymond Auyeung, James Fitzgerald, Douglas B. Chrisey, Huey-Daw Wu
  • Patent number: 6936311
    Abstract: A method for creating a microarray of biomaterial uses a source of laser energy, a receiving substrate, and a target substrate. The target substrate comprises a laser-transparent support having a laser-facing surface and a support surface. The target substrate also comprises a composite material having a back surface in contact with the support surface and a front surface. The composite material comprises a mixture of the biomaterial to be deposited and a matrix material. The matrix material is a material that has the property that, when it is exposed to laser energy, it desorbs from the laser-transparent support. The source of laser energy is positioned in relation to the target substrate so that laser energy is directed through the laser-facing surface of the target substrate and through the laser-transparent support to strike the composite material at a defined target location. The receiving substrate is positioned in a spaced relation to the target substrate.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: August 30, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Bradley R. Ringeisen, Douglas B. Chrisey, Alberto Pique, R. Andrew McGill, David Krizman
  • Patent number: 6905738
    Abstract: A method for depositing a transfer material onto a receiving substrate uses a source of laser energy, a receiving substrate, and a target substrate. The target substrate comprises a laser-transparent support having a laser-facing surface and a support surface. The target substrate also comprises a composite material having a back surface in contact with the support surface and a front surface. The composite material comprises a mixture of the transfer material to be deposited and a matrix material. The matrix material is a material that has the property that, when it is exposed to laser energy, it desorbs from the laser-transparent support. The source of laser energy is positioned in relation to the target substrate so that laser energy is directed through the laser-facing surface of the target substrate and through the laser-transparent support to strike the composite material at a defined target location. The receiving substrate is positioned in a spaced relation to the target substrate.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: June 14, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Bradley R. Ringeisen, Douglas B. Chrisey, Alberto Pique, R. Andrew McGill
  • Patent number: 6815015
    Abstract: A method for laser transfer and deposition of a rheological fluid wherein laser energy strikes a target substrate comprising a rheological fluid, causing a portion of the rheological fluid to evaporate and propel a jet of non-evaporated rheological fluid onto a receiving substrate.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: November 9, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Henry Daniel Young, Raymond C. Y. Auyeung, Bradley R. Ringeisen, Douglas B. Chrisey, Dana D. Dlott
  • Patent number: 6805918
    Abstract: A method for laser transfer and deposition of a rheological fluid wherein laser energy strikes a target substrate comprising a rheological fluid, causing a portion of the rheological fluid to evaporate and propel non-evaporated rheological fluid onto a receiving substrate.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: October 19, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Raymond C. Y. Auyeung, Alberto Pique, Henry Daniel Young, Rohit Modi, Huey-Daw Wu, Douglas B. Chrisey, James M. Fitz-Gerald, Bradley R. Ringeisen
  • Patent number: 6766764
    Abstract: An device for depositing a transfer material onto a receiving substrate includes a source of pulsed laser energy, a receiving substrate, and a target substrate. The target substrate comprises a laser transparent support having a back surface and a front surface. The front surface has a coating that comprises a mixture of the transfer material to be deposited and a matrix material. The matrix material is a material that has the property that, when it is exposed to pulsed laser energy, it is more volatile than the transfer material. The source of pulsed laser energy is be positioned in relation to the target substrate so that pulsed laser energy is directed through the back surface of the target substrate and through the laser-transparent support to strike the coating at a defined location with sufficient energy to volatilize the matrix material at the location, causing the coating to desorb from the location and be lifted from the surface of the support.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: July 27, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Douglas B. Chrisey, R. Andrew McGill, Alberto Pique
  • Patent number: 6660343
    Abstract: A composite layer of a sorbent, chemoselective, non-electrically-conducting polymer and nano-particles of an electrically conducting material dispersed throughout the polymer is formed on a substrate by pulsed laser deposition, matrix assisted pulsed laser evaporation or matrix assisted pulsed laser evaporation direct writing.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: December 9, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Douglas B. Chrisey, Alberto Pique
  • Publication number: 20030157253
    Abstract: A multicomponent film on a substrate can be annealed at higher temperatures in oxygen by using a specifically designed annealing vessel. The vessel is formed of a multicomponent material which has at least all of the components of the first multicomponent material of the film or, in the case where there are nonvolatile components, then the vessel is formed of a second multicomponent material which has at least the same composition of relatively volatile components as the first multicomponent film. As the multicomponent film is annealed for a sufficient time within the vessel the multicomponent film remains in contact with a vapor of the first multicomponent material and the vessel material. This process called bomb annealing prevents loss of volatile components from the film and roughening of the film surface and leads to films with lower dielectric loss. Preferred thin film materials are ferroelectric materials although any material could be used.
    Type: Application
    Filed: August 15, 2002
    Publication date: August 21, 2003
    Inventors: James Horwitz, Douglas B. Chrisey, Adrian Carter, Manfred Kahn
  • Publication number: 20030017277
    Abstract: A method for laser transfer and deposition of a rheological fluid wherein laser energy strikes a target substrate comprising a rheological fluid, causing a portion of the theological fluid to evaporate and propel a jet of non-evaporated rheological fluid onto a receiving substrate.
    Type: Application
    Filed: September 9, 2002
    Publication date: January 23, 2003
    Inventors: Henry Daniel Young, Raymond C.Y. Auyeung, Bradley R. Ringeisen, Douglas B. Chrisey, Dana D. Dlott
  • Patent number: 6503573
    Abstract: A multicomponent film on a substrate can be annealed at higher temperatures in oxygen by using a specifically designed annealing vessel. The vessel is formed of a multicomponent material which has at least all of the components of the first multicomponent material of the film or, in the case where there are nonvolatile components, then the vessel is formed of a second multicomponent material which has at least the same composition of relatively volatile components as the first multicomponent film. As the multicomponent film is annealed for a sufficient time within the vessel the multicomponent film remains in contact with a vapor of the first multicomponent material and the vessel material. This process called bomb annealing prevents loss of volatile components from the film and roughening of the film surface and leads to films with lower dielectric loss. Preferred thin film materials are ferroelectric materials although any material could be used.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: January 7, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Horwitz, Douglas B. Chrisey, Adriaan Carter, Manfred Kahn, Jeffrey M. Pond, Steven W. Kirchoefer, Wontae Chang
  • Publication number: 20020197401
    Abstract: A method for laser transfer and deposition of a Theological fluid wherein laser energy strikes a target substrate comprising a Theological fluid, causing a portion of the Theological fluid to evaporate and propel non-evaporated Theological fluid onto a receiving substrate.
    Type: Application
    Filed: May 10, 2002
    Publication date: December 26, 2002
    Inventors: Reymond C.Y. Auyeung, Alberto Pique, Henry Daniel Young, Rohit Modi, Huey-Daw Wu, Douglas B. Chrisey, James M. Fitz-Gerald, Bradley R. Ringeisen
  • Publication number: 20020122898
    Abstract: A method for depositing a transfer material onto a receiving substrate uses a source of laser energy, a receiving substrate, and a target substrate. The target substrate comprises a laser-transparent support having a laser-facing surface and a support surface. The target substrate also comprises a composite material having a back surface in contact with the support surface and a front surface. The composite material comprises a mixture of the transfer material to be deposited and a matrix material. The matrix material is a material that has the property that, when it is exposed to laser energy, it desorbs from the laser-transparent support. The source of laser energy is positioned in relation to the target substrate so that laser energy is directed through the laser-facing surface of the target substrate and through the laser-transparent support to strike the composite material at a defined target location. The receiving substrate is positioned in a spaced relation to the target substrate.
    Type: Application
    Filed: February 8, 2002
    Publication date: September 5, 2002
    Inventors: Bradley R. Ringeisen, Douglas B. Chrisey, Alberto Pique, R. Andrew McGill
  • Publication number: 20020081397
    Abstract: A composite layer of a sorbent, chemoselective, non-electrically-conducting polymer and nano-particles of an electrically conducting material dispersed throughout the polymer is formed on a substrate by pulsed laser deposition, matrix assisted pulsed laser evaporation or matrix assisted pulsed laser evaporation direct writing.
    Type: Application
    Filed: October 1, 2001
    Publication date: June 27, 2002
    Inventors: R. Andrew McGill, Douglas B. Chrisey, Alberto Pique
  • Publication number: 20020071901
    Abstract: A method for creating a microarray of biomaterial uses a source of laser energy, a receiving substrate, and a target substrate. The target substrate comprises a laser-transparent support having a laser-facing surface and a support surface. The target substrate also comprises a composite material having a back surface in contact with the support surface and a front surface. The composite material comprises a mixture of the biomaterial to be deposited and a matrix material. The matrix material is a material that has the property that, when it is exposed to laser energy, it desorbs from the laser-transparent support. The source of laser energy is positioned in relation to the target substrate so that laser energy is directed through the laser-facing surface of the target substrate and through the laser-transparent support to strike the composite material at a defined target location. The receiving substrate is positioned in a spaced relation to the target substrate.
    Type: Application
    Filed: February 8, 2002
    Publication date: June 13, 2002
    Inventors: Bradley R. Ringeisen, Douglas B. Chrisey, Alberto Pique, R. Andrew McGill, David Krizman
  • Patent number: 6246071
    Abstract: This invention pertains to a device of a substrate and a ZrO2-based semiconductor disposed thereon and a method for depositing the semiconductor on the substrate. The semiconductor is typically in the form of a film of 1-20 weight % ZrO2 and 99-80 weight % In2O3 or SnO2 . The semiconductor is tunable in terms of optical transmission and electrical conductivity. Its transmission is in excess of about 80% over the wavelength range of 400-900 nm and its resistivity is from about 1.3×10−3 &OHgr;-cm to about 6.5×10−2 &OHgr;-cm. The deposition method is characterized by depositing in a chamber the semiconductor on a substrate by means of a physical vapor deposition whole maintaining a small oxygen pressure in the chamber.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: June 12, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Earl F. Skelton, Alberto Pique, James S. Horwitz, Douglas B. Chrisey, Heungsoo Kim
  • Patent number: 6177151
    Abstract: An device for depositing a transfer material onto a receiving substrate includes a source of pulsed laser energy, a receiving substrate, and a target substrate. The target substrate comprises a laser transparent support having a back surface and a front surface. The front surface has a coating that comprises a mixture of the transfer material to be deposited and a matrix material. The matrix material is a material that has the property that, when it is exposed to pulsed laser energy, it is more volatile than the transfer material. The source of pulsed laser energy is be positioned in relation to the target substrate so that pulsed laser energy is directed through the back surface of the target substrate and through the laser-transparent support to strike the coating at a defined location with sufficient energy to volatilize the matrix material at the location, causing the coating to desorb from the location and be lifted from the surface of the support.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: January 23, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Douglas B. Chrisey, R. Andrew McGill, Alberto Pique
  • Patent number: 5380298
    Abstract: A flexible medical device which is intended to be disposed in the opening or the incision in the skin tissue of an animal includes a thin, flexible, adherent film coating of a bioactive ceramic material at least at a point where the flexible portion of the medical device exits from the tissue. This bioactive coating bonds with the skin at the exit site to prevent infection of the tissue while allowing the catheter to remain flexible.
    Type: Grant
    Filed: April 7, 1993
    Date of Patent: January 10, 1995
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Paul M. Zabetakis, Catherine M. Cotell, Douglas B. Chrisey