Patents by Inventor Douglas B. Weibel

Douglas B. Weibel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10253039
    Abstract: The present invention provides N-benzyl-3-sulfonamidopyrrolidines and related compounds, as well as pharmaceutical compositions and sanitizing compositions containing the same. The compounds and compositions are useful as antibiotic agents. Methods for making and using the compounds and compositions are also described.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: April 9, 2019
    Assignees: Wisconsin Alumni Research Foundation, The Regents of the University of California
    Inventors: Jared T. Shaw, Jared T. Moore, Molly R. Fensterwald, Douglas B. Weibel, Katherine A. Hurley
  • Publication number: 20170197981
    Abstract: The present invention provides N-benzyl-3-sulfonamidopyrrolidines and related compounds, as well as pharmaceutical compositions and sanitizing compositions containing the same. The compounds and compositions are useful as antibiotic agents. Methods for making and using the compounds and compositions are also described.
    Type: Application
    Filed: November 11, 2016
    Publication date: July 13, 2017
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, WISONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Jared T. Shaw, Jared T. Moore, Molly R. Fensterwald, Douglas B. Weibel, Katherine A. Hurley
  • Publication number: 20160175287
    Abstract: Described herein is a novel class of inhibitors of bacterial cell division. Several lines of evidence suggest the compounds disclosed herein specifically target the division process and have antibacterial activity in vitro and in vivo. The inhibitors are useful for treating subject in need of treatment for bacterial infections as will as for inhibiting bacterial growth, such as growth on contaminated surfaces.
    Type: Application
    Filed: February 2, 2016
    Publication date: June 23, 2016
    Inventors: Douglas B. Weibel, Ye Jin Eun, Maoquan Zhou
  • Patent number: 9282738
    Abstract: Described herein is a novel class of inhibitors of bacterial cell division. Several lines of evidence suggest the compounds disclosed herein specifically target the division process and have antibacterial activity in vitro and in vivo. The inhibitors are useful for treating subject in need of treatment for bacterial infections as will as for inhibiting bacterial growth, such as growth on contaminated surfaces.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 15, 2016
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Douglas B. Weibel, Ye Jin Eun, Maoquan Zhou
  • Patent number: 8985547
    Abstract: A microfluidic valve assembly includes a structure defining a microfluidic fluid path and an actuator that can be moved between different positions controlling flow through the channel. In one embodiment, the actuator can be threaded into at least a portion of the structure, and can be moved rotationally between a first position, causing relatively greater constriction of a microfluidic fluid path, and a second position causing relatively lesser constriction of the fluid path. Actuating the actuator, e.g., by rotation, can deform material between the valve and the fluid path, thereby constricting at least a portion of the underlying fluid path and regulating the flow of a fluid in the fluid path. In another aspect, the invention provides a reservoir into which fluid can be placed and from which fluid can be introduced into a microfluidic system. In one embodiment, the reservoir is expandable and thereby able to store fluid under pressure for delivery to a microfluidic system.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: March 24, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Douglas B. Weibel, Andrew Lee, Scott Potenta, Adam Siegel, Maarten Kruithof, George M. Whitesides
  • Patent number: 8486833
    Abstract: Disclosed herein are a variety of microfluidic devices and solid, typically electrically conductive devices that can be formed using such devices as molds. In certain embodiments, the devices that are formed comprise conductive pathways formed by solidifying a liquid metal present in one or more microfluidic channels (such devices hereinafter referred to as “microsolidic” devices). In certain such devices, in which electrical connections can be formed and/or reformed between regions in a microfluidic structure; in some cases, the devices/circuits formed may be flexible and/or involve flexible electrical components. In certain embodiments, the solid metal wires/conductive pathways formed in microfluidic channel(s) may remain contained within the microfluidic structure. In certain such embodiments, the conductive pathways formed may be located in proximity to other microfluidic channel(s) of the structure that carry flowing fluid, such that the conductive pathway can create energy (e.g.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: July 16, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Derek A. Bruzewicz, Mila Boncheva-Bettex, George M. Whitesides, Adam Siegel, Douglas B. Weibel, Sergey S. Shevkoplyas, Andres Martinez
  • Publication number: 20130018079
    Abstract: Described herein is a novel class of inhibitors of bacterial cell division. Several lines of evidence suggest the compounds disclosed herein specifically target the division process and have antibacterial activity in vitro and in vivo. The inhibitors are useful for treating subject in need of treatment for bacterial infections as will as for inhibiting bacterial growth, such as growth on contaminated surfaces.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 17, 2013
    Inventors: Douglas B. Weibel, Ye Jin Eun, Maoquan Zhou
  • Publication number: 20110045577
    Abstract: Disclosed herein are a variety of microfluidic devices and solid, typically electrically conductive devices that can be formed using such devices as molds. In certain embodiments, the devices that are formed comprise conductive pathways formed by solidifying a liquid metal present in one or more microfluidic channels (such devices hereinafter referred to as “microsolidic” devices). In certain such devices, in which electrical connections can be formed and/or reformed between regions in a microfluidic structure; in some cases, the devices/circuits formed may be flexible and/or involve flexible electrical components. In certain embodiments, the solid metal wires/conductive pathways formed in microfluidic channel(s) may remain contained within the microfluidic structure. In certain such embodiments, the conductive pathways formed may be located in proximity to other microfluidic channel(s) of the structure that carry flowing fluid, such that the conductive pathway can create energy (e.g.
    Type: Application
    Filed: May 18, 2006
    Publication date: February 24, 2011
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Derek A. Bruzewicz, Mila Boncheva-Bettex, George M. Whitesides, Adam Siegel, Douglas B. Weibel, Sergey S. Shevkoplyas, Andres Martinez
  • Publication number: 20100116343
    Abstract: A microfluidic valve assembly includes a structure defining a microfluidic fluid path and an actuator that can be moved between different positions controlling flow through the channel. In one embodiment, the actuator can be threaded into at least a portion of the structure, and can be moved rotationally between a first position, causing relatively greater constriction of a microfluidic fluid path, and a second position causing relatively lesser constriction of the fluid path. Actuating the actuator, e.g., by rotation, can deform material between the valve and the fluid path, thereby constricting at least a portion of the underlying fluid path and regulating the flow of a fluid in the fluid path. In another aspect, the invention provides a reservoir into which fluid can be placed and from which fluid can be introduced into a microfluidic system. In one embodiment, the reservoir is expandable and thereby able to store fluid under pressure for delivery to a microfluidic system.
    Type: Application
    Filed: January 31, 2006
    Publication date: May 13, 2010
    Applicant: President and Fellows of Harvard college
    Inventors: Douglas B. Weibel, Andrew Lee, Scott Potenta, Adam Siegel, Maarten Kruithof, George M. Whitesides