Patents by Inventor Douglas C. Folts

Douglas C. Folts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10669001
    Abstract: A hybrid electrical and mechanical ship propulsion and electric power system, includes a first mechanical power plant configured to drive a first propeller via a first shaft. There is a second electrical power plant configured to drive a second propeller via a second shaft. The second electrical power plant includes HTS generators and a high temperature superconductor (HTS) motor interconnected to the second shaft. There is a first electrical network to which the HTS motor is connected in order to energize the HTS motor to drive the second propeller via the second shaft.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 2, 2020
    Inventors: John M. Ulliman, Douglas C. Folts, Bruce Gamble, Stephen I. Callis
  • Publication number: 20190176951
    Abstract: A hybrid electrical and mechanical ship propulsion and electric power system, includes a first mechanical power plant configured to drive a first propeller via a first shaft. There is a second electrical power plant configured to drive a second propeller via a second shaft. The second electrical power plant includes HTS generators and a high temperature superconductor (HTS) motor interconnected to the second shaft. There is a first electrical network to which the HTS motor is connected in order to energize the HTS motor to drive the second propeller via the second shaft.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 13, 2019
    Inventors: John M. Ulliman, Douglas C. Folts, Bruce Gamble, Stephen I. Callis
  • Patent number: 10193340
    Abstract: A static synchronous compensator configured to be installed in and provide reactive power to a medium voltage electric distribution system. There is a multi-level cascaded H-bridge (CHB) converter in an enclosure, having a nominal operating voltage in the medium voltage range. There is a first electrical bushing connecting the medium voltage electric distribution system to the input of the CHB converter. There is a second electrical bushing connecting ground or floating ground to the output of the CHB converter. There is a cooling system, which circulates the cooling fluid between in the interior of the enclosure to cool the CHB converter. There is a controller to control the converter to output reactive power at a medium voltage level.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: January 29, 2019
    Assignee: American Superconductor Corporation
    Inventors: Andrew Specht, John R. Brubaker, Mark D. Putnam, Douglas C. Folts, David G. Oteman, Patrick S. Flannery
  • Publication number: 20180269682
    Abstract: A static synchronous compensator configured to be installed in and provide reactive power to a medium voltage electric distribution system. There is a multi-level cascaded H-bridge (CHB) converter in an enclosure, having a nominal operating voltage in the medium voltage range. There is a first electrical bushing connecting the medium voltage electric distribution system to the input of the CHB converter. There is a second electrical bushing connecting ground or floating ground to the output of the CHB converter. There is a cooling system, which circulates the cooling fluid between in the interior of the enclosure to cool the CHB converter. There is a controller to control the converter to output reactive power at a medium voltage level.
    Type: Application
    Filed: October 5, 2017
    Publication date: September 20, 2018
    Inventors: Andrew Specht, John R. Brubaker, Mark D. Putnam, Douglas C. Folts, David G. Oteman, Patrick S. Flannery
  • Patent number: 9172312
    Abstract: An apparatus for harvesting solar power includes a photovoltaic array for generating a DC voltage; a discharge circuit for causing the DC voltage to decay from a first value to a second value; and an inverter circuit for transforming an output voltage from the discharge circuit into an AC voltage.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 27, 2015
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, Kleber V. C. Facchini, Ajith H. Wijenayake, Gary J. Bowers
  • Patent number: 8886267
    Abstract: A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 11, 2014
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 8532725
    Abstract: A method of controlling fault currents within a utility power grid is provided. The method may include coupling a superconducting electrical path between a first and a second node within the utility power grid and coupling a non-superconducting electrical path between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path may be electrically connected in parallel. The superconducting electrical path may have a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path may have a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: September 10, 2013
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 8189324
    Abstract: A power electronic assembly includes a pair of thermally and electrically conductive plates, and semiconductor switching elements positioned between contact surfaces of the pair of conductive plates. A first of the semiconductor switching elements is positioned at a first region of the conductive plates, and a second of the semiconductor switching elements positioned at a second region of the conductive plates. At least one of the conductive plates includes an aperture positioned between the first region and the second region of the conductive plates, such that in a compressed state, a contact surface of the conductive plate associated with the first region is substantially parallel to and offset from that of the second region in a direction parallel to the direction of compression.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: May 29, 2012
    Assignee: American Superconductor Corporation
    Inventor: Douglas C. Folts
  • Patent number: 8120932
    Abstract: A system for connecting a wind turbine generator to a utility power network includes a first power converter that converts an AC signal from the wind turbine generator to a DC signal and supplies a controlled amount of reactive current to the wind turbine generator. The system also includes a second power converter, connected in series with the first converter, which converts the DC signal from the first power converter to a line-side AC signal and supplies a controlled amount of current to the utility power network. A power dissipation element is coupled to the first and second power converters for dissipating power from the first power converter.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: February 21, 2012
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, David J. Gritter, Michael P. Ross
  • Publication number: 20120033468
    Abstract: In a general aspect, a power conversion system includes a power converter, a transformer, and a voltage adjustment device. The power converter is configured to receive a variable DC power generated by a power generation device and to convert the received DC power to AC power at a first voltage. The transformer is configured to receive the AC power from the power converter and to deliver AC power at a second voltage to a utility power network. The voltage adjustment device is configured to adjust the first voltage to a target value determined on the basis of a voltage of the DC power.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 9, 2012
    Applicant: American Superconductor Corporation
    Inventors: Douglas C. Folts, Arnold P. Kehrli
  • Patent number: 7989983
    Abstract: In a general aspect, a power conversion system includes a power converter, a transformer, and a voltage adjustment device. The power converter is configured to receive a variable DC power generated by a power generation device and to convert the received DC power to AC power at a first voltage. The transformer is configured to receive the AC power from the power converter and to deliver AC power at a second voltage to a utility power network. The voltage adjustment device is configured to adjust the first voltage to a target value determined on the basis of a voltage of the DC power.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 2, 2011
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, Arnold P. Kehrli
  • Publication number: 20110134609
    Abstract: A power electronic assembly includes a pair of thermally and electrically conductive plates, and semiconductor switching elements positioned between contact surfaces of the pair of conductive plates. A first of the semiconductor switching elements is positioned at a first region of the conductive plates, and a second of the semiconductor switching elements positioned at a second region of the conductive plates. At least one of the conductive plates includes an aperture positioned between the first region and the second region of the conductive plates, such that in a compressed state, a contact surface of the conductive plate associated with the first region is substantially parallel to and offset from that of the second region in a direction parallel to the direction of compression.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 9, 2011
    Applicant: American Superconductor Corporation
    Inventor: Douglas C. Folts
  • Publication number: 20110132631
    Abstract: A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
    Type: Application
    Filed: November 22, 2010
    Publication date: June 9, 2011
    Applicant: American Superconductor Corporation
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 7902461
    Abstract: A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: March 8, 2011
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Publication number: 20100275966
    Abstract: An apparatus for harvesting solar power includes a photovoltaic array for generating a DC voltage; a discharge circuit for causing the DC voltage to decay from a first value to a second value; and an inverter circuit for transforming an output voltage from the discharge circuit into an AC voltage.
    Type: Application
    Filed: November 25, 2009
    Publication date: November 4, 2010
    Applicant: American Superconductor Corporation
    Inventors: Douglas C. Folts, Kleber V. C. Facchini, Ajith H. Wijenayake, Gary J. Bowers
  • Publication number: 20100277002
    Abstract: In a general aspect, a power conversion system includes a power converter, a transformer, and a voltage adjustment device. The power converter is configured to receive a variable DC power generated by a power generation device and to convert the received DC power to AC power at a first voltage. The transformer is configured to receive the AC power from the power converter and to deliver AC power at a second voltage to a utility power network. The voltage adjustment device is configured to adjust the first voltage to a target value determined on the basis of a voltage of the DC power.
    Type: Application
    Filed: November 24, 2009
    Publication date: November 4, 2010
    Applicant: American Superconductor Corporation
    Inventors: Douglas C. Folts, Arnold P. Kehrli
  • Publication number: 20100149707
    Abstract: A method of controlling fault currents within a utility power grid is provided. The method may include coupling a superconducting electrical path between a first and a second node within the utility power grid and coupling a non-superconducting electrical path between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path may be electrically connected in parallel. The superconducting electrical path may have a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path may have a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
    Type: Application
    Filed: January 25, 2010
    Publication date: June 17, 2010
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 7724482
    Abstract: A superconducting transformer system is configured to be included within a utility power grid having a known fault current level. The superconducting transformer system includes a non-superconducting transformer interconnected between a first node and a second node of the utility power grid. A superconducting transformer is interconnected between the first node and the second node of the utility power grid. The superconducting transformer and the non-superconducting transformer are electrically connected in parallel. The superconducting transformer has a lower series impedance than the non-superconducting transformer when the superconducting transformer is operated below a critical current level and a critical temperature. The superconducting transformer is configured to have a series impedance that is at least N times the series impedance of the non-superconducting transformer when the superconducting transformer is operated at or above one or more of the critical current level and the critical temperature.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: May 25, 2010
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 7674751
    Abstract: A method of making a laminated superconductor wire includes providing an assembly, where the assembly includes a substrate; a superconductor layer overlaying a surface of the substrate, the superconductor layer having a defined pattern; and a cap layer; and slitting the assembly in accordance with the defined pattern of the superconductor layer to form a sealed wire. Slitting the assembly in accordance with the defined pattern may form multiple sealed wires, and the substrate may be substantially wider than the sealed wires.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 9, 2010
    Assignee: American Superconductor Corporation
    Inventors: Alexis P. Malozemoff, Martin W. Rupich, Douglas C. Folts
  • Patent number: RE41170
    Abstract: Power compensation is provided from a power compensation device to a utility power network carrying a nominal voltage. The power compensation device has a steady-state power delivery characteristic. The power compensation is providing by detecting a change of a predetermined magnitude in the nominal voltage on the utility power network and controlling the power compensation device to deliver, for a first period of time and in response to the detected change in the nominal voltage, reactive power to the utility power network. The power compensation device is controlled to deliver, for a second period of time following the first period of time, reactive power to the utility power network at a level that is a factor N(N>1) greater than the steady-state power delivery characteristic of the power compensation device.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 30, 2010
    Assignee: American Superconductor Corporation
    Inventors: Thomas Gregory Hubert, Douglas C. Folts, Warren Elliott Buckles