Patents by Inventor Douglas C. Twilleager

Douglas C. Twilleager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9841821
    Abstract: In some embodiments, a system and/or method may assess handedness of a user of a system in an automated manner. The method may include displaying a 3D image on a display. The 3D image may include at least one object. The method may include tracking a position and an orientation of an input device in open space in relation to the 3D image. The method may include assessing a handedness of a user based on the position and the orientation of the input device with respect to at least one of the objects. In some embodiments, the method may include configuring at least a portion of the 3D image based upon the assessed handedness. The at least a portion of the 3D image may include interactive menus. In some embodiments, the method may include configuring at least a portion of an interactive hardware associated with the system based upon the assessed handedness.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: December 12, 2017
    Assignee: zSpace, Inc.
    Inventors: Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, David A. Chavez, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Patent number: 9681122
    Abstract: Systems and methods for enhancement of a coupled zone of a 3D stereoscopic display. The method may include determining a size and a shape of the coupled zone. The coupled zone may include a physical volume specified by the user's visual depth of field with respect to screen position of the 3D stereoscopic display and the user's point of view. Content may be displayed at a first position with a virtual 3D space and the first position may correspond to a position within the coupled zone. It may be determined that the content is not contained in the coupled zone or is within a specified distance from a boundary of the coupled zone and, in response, display of the content may be adjusted such that the content has a second position in the virtual 3D space that corresponds to another position within the coupled zone.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: June 13, 2017
    Assignee: zSpace, Inc.
    Inventors: Mark P. Wilson, Douglas C. Twilleager, David J. Borel
  • Patent number: 9354718
    Abstract: Modifying perspective of stereoscopic images provided by one or more displays based on changes in user view, user control, and/or display status. A display system may include a housing, a display comprised in the housing, and one or more tracking sensors comprised in the housing. The one or more tracking sensors may be configured to sense user view and/or user control position and orientation information. The one or more tracking sensors may be associated with a position and orientation of the display. The user view and/or user control position and orientation information may be used in generating the rendered left and right eye images for display.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: May 31, 2016
    Assignee: zSpace, Inc.
    Inventors: Michael A. Vesely, David A. Chavez, Douglas C. Twilleager
  • Patent number: 9342917
    Abstract: In some embodiments, a system and/or method may include accessing three-dimensional (3D) imaging software on a remote server. The method may include accessing over a network a 3D imaging software package on a remote server using a first system. The method may include assessing, using the remote server, a capability of the first system to execute the 3D imaging software package. The method may include displaying an output of the 3D imaging software using the first system based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a first portion of the 3D imaging software using the remote server based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a second portion of the 3D imaging software using the first system based upon the assessed capabilities of the first system.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: May 17, 2016
    Assignee: zSpace, Inc.
    Inventors: David A. Chavez, Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Patent number: 9286713
    Abstract: In some embodiments, a system and/or method may include accessing three-dimensional (3D) imaging software on a remote server. The method may include accessing over a network a 3D imaging software package on a remote server using a first system. The method may include assessing, using the remote server, a capability of the first system to execute the 3D imaging software package. The method may include displaying an output of the 3D imaging software using the first system based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a first portion of the 3D imaging software using the remote server based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a second portion of the 3D imaging software using the first system based upon the assessed capabilities of the first system.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: March 15, 2016
    Assignee: zSpace, Inc.
    Inventors: David A. Chavez, Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Publication number: 20150371428
    Abstract: In some embodiments, a system and/or method may include accessing three-dimensional (3D) imaging software on a remote server. The method may include accessing over a network a 3D imaging software package on a remote server using a first system. The method may include assessing, using the remote server, a capability of the first system to execute the 3D imaging software package. The method may include displaying an output of the 3D imaging software using the first system based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a first portion of the 3D imaging software using the remote server based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a second portion of the 3D imaging software using the first system based upon the assessed capabilities of the first system.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 24, 2015
    Inventors: David A. Chavez, Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Publication number: 20150363964
    Abstract: In some embodiments, a system and/or method may include accessing three-dimensional (3D) imaging software on a remote server. The method may include accessing over a network a 3D imaging software package on a remote server using a first system. The method may include assessing, using the remote server, a capability of the first system to execute the 3D imaging software package. The method may include displaying an output of the 3D imaging software using the first system based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a first portion of the 3D imaging software using the remote server based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a second portion of the 3D imaging software using the first system based upon the assessed capabilities of the first system.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 17, 2015
    Inventors: David A. Chavez, Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Publication number: 20150304645
    Abstract: Systems and methods for enhancement of a coupled zone of a 3D stereoscopic display. The method may include determining a size and a shape of a coupled zone of a 3D stereoscopic display. The coupled zone may include a physical volume specified by the user's visual depth of field with respect to screen position of the 3D stereoscopic display and the user's point of view. Content may be displayed at a first position with a virtual 3D space and the first position may correspond to a position within the coupled zone. It may be determined that the content is not contained in the coupled zone or is within a specified distance from a boundary of the coupled zone and, in response, display of the content may be adjusted such that the content has a second position in the virtual 3D space that corresponds to another position within the coupled zone.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 22, 2015
    Applicant: zSpace, Inc.
    Inventors: Mark P. Wilson, Douglas C. Twilleager, David J. Borel
  • Patent number: 9153069
    Abstract: In some embodiments, a system and/or method may include accessing three-dimensional (3D) imaging software on a remote server. The method may include accessing over a network a 3D imaging software package on a remote server using a first system. The method may include assessing, using the remote server, a capability of the first system to execute the 3D imaging software package. The method may include displaying an output of the 3D imaging software using the first system based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a first portion of the 3D imaging software using the remote server based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a second portion of the 3D imaging software using the first system based upon the assessed capabilities of the first system.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: October 6, 2015
    Assignee: zSpace, Inc.
    Inventors: David A. Chavez, Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Publication number: 20150138189
    Abstract: In some embodiments, a system and/or method may include accessing three-dimensional (3D) imaging software on a remote server. The method may include accessing over a network a 3D imaging software package on a remote server using a first system. The method may include assessing, using the remote server, a capability of the first system to execute the 3D imaging software package. The method may include displaying an output of the 3D imaging software using the first system based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a first portion of the 3D imaging software using the remote server based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a second portion of the 3D imaging software using the first system based upon the assessed capabilities of the first system.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 21, 2015
    Inventors: David A. Chavez, Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Publication number: 20150123891
    Abstract: In some embodiments, a system and/or method may assess handedness of a user of a system in an automated manner. The method may include displaying a 3D image on a display. The 3D image may include at least one object. The method may include tracking a position and an orientation of an input device in open space in relation to the 3D image. The method may include assessing a handedness of a user based on the position and the orientation of the input device with respect to at least one of the objects. In some embodiments, the method may include configuring at least a portion of the 3D image based upon the assessed handedness. The at least a portion of the 3D image may include interactive menus. In some embodiments, the method may include configuring at least a portion of an interactive hardware associated with the system based upon the assessed handedness.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Applicant: zSpace, Inc.
    Inventors: Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, David A. Chavez, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Patent number: 8903958
    Abstract: In some embodiments, a system and/or method may include accessing three-dimensional (3D) imaging software on a remote server. The method may include accessing over a network a 3D imaging software package on a remote server using a first system. The method may include assessing, using the remote server, a capability of the first system to execute the 3D imaging software package. The method may include displaying an output of the 3D imaging software using the first system based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a first portion of the 3D imaging software using the remote server based upon the assessed capabilities of the first system. In some embodiments, the method may include executing a second portion of the 3D imaging software using the first system based upon the assessed capabilities of the first system.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: December 2, 2014
    Assignee: zSpace, Inc.
    Inventors: David A. Chavez, Jerome C. Tu, Carola F. Thompson, Mark F. Flynn, Douglas C. Twilleager, Kevin D. Morishige, Peter F. Ullmann, Arthur L. Berman
  • Publication number: 20120162204
    Abstract: Modifying perspective of stereoscopic images provided by one or more displays based on changes in user view, user control, and/or display status. A display system may include a housing, a display comprised in the housing, and one or more tracking sensors comprised in the housing. The one or more tracking sensors may be configured to sense user view and/or user control position and orientation information. The one or more tracking sensors may be associated with a position and orientation of the display. The user view and/or user control position and orientation information may be used in generating the rendered left and right eye images for display.
    Type: Application
    Filed: November 18, 2011
    Publication date: June 28, 2012
    Inventors: Michael A. Vesely, David A. Chavez, Douglas C. Twilleager
  • Publication number: 20110210962
    Abstract: A method for recording media generated within a virtual world from user selectable locations that chosen by a participant of the virtual world without requiring a link with a location of their avatar. The media may be audio or video or still images generated or rendered within the virtual world. The method allows a user to insert independent movie recorders in a virtual world with the cameras associated with such recorders being independent from the avatar and each other. A virtual world generator may include a movie recorder module that allows a participant of the virtual world to insert a movie recorder into the world. The user may also change its position to selectively position a camera on the front portion of the movie recorder body and change the orientation of the movie recorder to allow the user to determine the scene within the world recorded by the camera.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 1, 2011
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Bernard Horan, Paul V. Byrne, Douglas C. Twilleager, Nicole Y. Mordecai
  • Patent number: 7800614
    Abstract: A system and method for communicating 3D branch graph data and updates to branch graph data between clients and a display server in a 3D window system. A client locally creates a branch graph. When the client ready to make the branch graph live remote, it sends the branch graph to the display server using at least one batch protocol request. The display server builds a copy of the branch graph and attaches it to a centralized scene graph that it manages. The client may subsequently induce detachment of the branch graph from the scene graph. The client may buffer up changes to the local branch graph when its remote counterpart (in the display server) is not attached to the scene graph. The buffered changes may be sent to the display server using at least one batch protocol request when the client is again ready to make the branch graph live remote.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: September 21, 2010
    Assignee: Oracle America, Inc.
    Inventors: Deron D. Johnson, Hideya Kawahara, Paul V. Byrne, Kevin C. Rushforth, Douglas C. Twilleager
  • Patent number: 7106326
    Abstract: A graphical processing system comprising a computational unit and a shadow processing unit coupled to the computational unit through a communication bus. The computational unit is configured to transfer coordinates C1 of a point P with respect to a first space to the shadow processing unit. In response to receiving the coordinates C1, the shadow processing unit is configured to: (a) transform the coordinate C1 to determine map coordinates s and t and a depth value Dp for the point P, (b) access a neighborhood of depth values from a memory using the map coordinates s and t, (c) compare the depth value DP to the depth values of the neighborhood, (d) filter binary results of the comparisons to determine a shadow fraction, and (e) transfer the shadow fraction to the computational unit through the communication bus.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: September 12, 2006
    Assignee: Sun Microsystems, Inc.
    Inventors: Michael F. Deering, Michael G. Lavelle, Douglas C. Twilleager, Daniel S. Rice
  • Publication number: 20040207622
    Abstract: A graphical computing system including a host processor and a target processor. In response to execution of stored instructions, the host processor is operable to: (a) receive input code for a program and a set of constraints on input variables of the program, (b) compile a specialized version VK of the input code for each constraint CK of said constraint set and store the specialized version VK in a local memory, (c) receive particular values of the input variables in response to a run-time invocation of the program, (d) search the constraint set to determine if the particular values satisfy any of the constraints of the constraint set, and (e) in response to determining that the particular values satisfy a constraint CL of the constraint set, invoking execution of the specialized version VL by the target processor.
    Type: Application
    Filed: March 31, 2003
    Publication date: October 21, 2004
    Inventors: Michael F. Deering, Douglas C. Twilleager, Daniel S. Rice
  • Publication number: 20040174360
    Abstract: A graphical processing system comprising a computational unit and a shadow processing unit coupled to the computational unit through a communication bus. The computational unit is configured to transfer coordinates C1 of a point P with respect to a first space to the shadow processing unit. In response to receiving the coordinates C1, the shadow processing unit is configured to: (a) transform the coordinate C1 to determine map coordinates s and t and a depth value DP for the point P, (b) access a neighborhood of depth values from a memory using the map coordinates s and t, (c) compare the depth value DP to the depth values of the neighborhood, (d) filter binary results of the comparisons to determine a shadow fraction, and (e) transfer the shadow fraction to the computational unit through the communication bus.
    Type: Application
    Filed: March 3, 2003
    Publication date: September 9, 2004
    Inventors: Michael F. Deering, Michael G. Lavelle, Douglas C. Twilleager, Daniel S. Rice