Patents by Inventor Douglas Cassel

Douglas Cassel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11862215
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line is formed of a conductive material (e.g., tungsten). The access line includes one or more resistive layers (e.g., tungsten silicon nitride) each having a resistivity greater than the resistivity of the conductive material used to form the access line. The resistive layers are formed overlying or underlying at least a portion of the memory cells. A driver is electrically connected to the access line using a via. The driver generates a voltage on the access line to access the memory cells.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: January 2, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Sateesh Talasila, Chandrasekhar Mandalapu, Robert Douglas Cassel, Sundaravadivel Rajarajan, Iniyan Soundappa Elango, Srivatsan Venkatesan
  • Patent number: 11715520
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line has left and right portions. A conductive layer is positioned in the access line between the left and right portions. The conductive layer is formed in a socket that has been etched or otherwise formed in the access line to provide an opening. This opening is filled by the conductive layer. The conductive layer electrically connects the left and right portions of the access line to a via. A driver is electrically connected to the via for generating a voltage on the access line for accessing one or more memory cells.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: August 1, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Robert Douglas Cassel, Sundaravadivel Rajarajan, Srivatsan Venkatesan, Iniyan Soundappa Elango
  • Publication number: 20230069190
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a crosspoint memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line is formed of a conductive material (e.g., tungsten). The access line includes one or more resistive layers (e.g., tungsten silicon nitride) each having a resistivity greater than the resistivity of the conductive material used to form the access line. The resistive layers are formed overlying or underlying at least a portion of the memory cells. A driver is electrically connected to the access line using a via. The driver generates a voltage on the access line to access the memory cells.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Sateesh Talasila, Chandrasekhar Mandalapu, Robert Douglas Cassel, Sundaravadivel Rajarajan, Iniyan Soundappa Elango, Srivatsan Venkatesan
  • Publication number: 20230018390
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line is split into left and right portions. Each portion is electrically connected to a single via, which a driver uses to generate a voltage on the access line. To reduce electrical discharge associated with current spikes, a first resistor is located between the left portion and the via, and a second resistor is located between the right portion and the via.
    Type: Application
    Filed: September 13, 2022
    Publication date: January 19, 2023
    Inventors: Sundaravadivel Rajarajan, Srivatsan Venkatesan, Iniyan Soundappa Elango, Robert Douglas Cassel
  • Patent number: 11514985
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line is split into left and right portions. Each portion is electrically connected to a single via, which a driver uses to generate a voltage on the access line. To reduce electrical discharge associated with current spikes, a first resistor is located between the left portion and the via, and a second resistor is located between the right portion and the via.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: November 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Sundaravadivel Rajarajan, Srivatsan Venkatesan, Iniyan Soundappa Elango, Robert Douglas Cassel
  • Publication number: 20220319595
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line has left and right portions. A conductive layer is positioned in the access line between the left and right portions. The conductive layer is formed in a socket that has been etched or otherwise formed in the access line to provide an opening. This opening is filled by the conductive layer. The conductive layer electrically connects the left and right portions of the access line to a via. A driver is electrically connected to the via for generating a voltage on the access line for accessing one or more memory cells.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 6, 2022
    Inventors: Robert Douglas Cassel, Sundaravadivel Rajarajan, Srivatsan Venkatesan, Iniyan Soundappa Elango
  • Publication number: 20220319594
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line has left and right portions. Spike current suppression is implemented by charge screening structures. The charge screening structures are formed by laterally integrating insulating layers into selected interior regions of the left and/or right portions of the access line. The insulating layers vertically separate the access line into top and bottom conductive portions above and below the insulating layers. For memory cells located overlying or underlying the insulating layers, the resistance to each memory cell is increased because the cell is accessed using only the higher resistance path of the top or bottom conductive portion.
    Type: Application
    Filed: May 25, 2022
    Publication date: October 6, 2022
    Inventors: Srivatsan Venkatesan, Sundaravadivel Rajarajan, Iniyan Soundappa Elango, Robert Douglas Cassel
  • Publication number: 20220319592
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line is split into left and right portions. Each portion is electrically connected to a single via, which a driver uses to generate a voltage on the access line. To reduce electrical discharge associated with current spikes, a first resistor is located between the left portion and the via, and a second resistor is located between the right portion and the via.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 6, 2022
    Inventors: Sundaravadivel Rajarajan, Srivatsan Venkatesan, Iniyan Soundappa Elango, Robert Douglas Cassel
  • Patent number: 11348640
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line has left and right portions. Spike current suppression is implemented by charge screening structures. The charge screening structures are formed by laterally integrating insulating layers into selected interior regions of the left and/or right portions of the access line. The insulating layers vertically separate the access line into top and bottom conductive portions above and below the insulating layers. For memory cells located overlying or underlying the insulating layers, the resistance to each memory cell is increased because the cell is accessed using only the higher resistance path of the top or bottom conductive portion.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: May 31, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Srivatsan Venkatesan, Sundaravadivel Rajarajan, Iniyan Soundappa Elango, Robert Douglas Cassel
  • Publication number: 20050255150
    Abstract: Methods and topical patches for outpatient treatment of moderate to severe pain with an opioid, for example, the pain caused by surgically closed wounds. The methods and patches of the invention comprise: (1) a local-anesthetic component for local delivery of a local anesthetic; and (2) an opioid component for transdermal delivery of an opioid. The synergistic combination of a local anesthetic and an opioid provides effective relief of moderate to severe pain at lower opioid doses than current opioid treatments.
    Type: Application
    Filed: April 25, 2005
    Publication date: November 17, 2005
    Inventors: Douglas Cassel, Kirti Valia
  • Publication number: 20040058994
    Abstract: A non-invasive and non-systemic method for intradermal prevention OR amelioration of pain from a surgically closed wound is disclosed. The method comprises topical delivery of a local anesthetic to an exterior surface of a surgically closed wound.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 25, 2004
    Applicant: EpiCept Corporation
    Inventor: R. Douglas Cassel
  • Patent number: 6645521
    Abstract: A non-invasive and non-systemic method for intradermal prevention OR amelioration of pain from a surgically closed wound is disclosed. The method comprises topical delivery of a local anesthetic to an exterior surface of a surgically closed wound.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: November 11, 2003
    Assignee: EpiCept Corporation
    Inventor: R. Douglas Cassel
  • Publication number: 20020128285
    Abstract: A non-invasive and non-systemic method for intradermal prevention OR amelioration of pain from a surgically closed wound is disclosed. The method comprises topical delivery of a local anesthetic to an exterior surface of a surgically closed wound.
    Type: Application
    Filed: May 3, 2002
    Publication date: September 12, 2002
    Applicant: American Pharmed Labs, Inc.
    Inventor: R. Douglas Cassel
  • Patent number: 6383511
    Abstract: A non-invasive and non-systemic method for intradermal prevention OR amelioration of pain from a surgically closed wound is disclosed. The method comprises topical delivery of a local anesthetic to an exterior surface of a surgically closed wound.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: May 7, 2002
    Assignee: EpiCept Corporation
    Inventor: R. Douglas Cassel
  • Patent number: 5911252
    Abstract: A system and method for automated filling of one or more medical syringes with desired volume(s) and concentration(s) of an injectate solution, such as a contrast solution usable for medical imaging procedures (e.g., x-ray, MRI, ultrasound). The system may incorporate an automated syringe magazine which interfaces with the programmable system controller to deliver the desired number of syringes after the syringes have been filled. Also, the system may utilize a low-pressure pumping arrangement wherein a pumping device engages each receiving syringe and withdraws the plunger of the receiving syringe to pull the desired injectate solution into the receiving syringe by negative pressure.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: June 15, 1999
    Inventor: Douglas Cassel
  • Patent number: 5823363
    Abstract: An article of manufacture which is constructed to receive and hold a plurality of syringes of differing size. The article comprises a substantially rigid frame having a plurality of syringe-receiving cavities formed therein. Each of the syringe-receiving cavities is sized and configured to receive and hold a syringe in a generally vertical orientation. At least some of the syringe-receiving cavities comprise variable diameter syringe-receiving cavities which are adapted to receive different sizes of syringes.
    Type: Grant
    Filed: October 18, 1996
    Date of Patent: October 20, 1998
    Inventor: Douglas Cassel