Patents by Inventor Douglas D. Glenn

Douglas D. Glenn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160365818
    Abstract: A system-specific interface module for a motor control subassembly for controlling operation of an electric motor within a larger system which uses a particular system communication method. The motor control subassembly includes a standard power module and the interface module. The power module includes a controller processor configured to receive input for controlling and to generate output regarding operation of the motor. The interface module includes a communication interface hardware block configured to exchange input and output signals with the larger system, and an interface processor configured to translate the input and output signals between the particular system communication method used by the larger system and a standard internal communication method used by the power module. Thus, the motor control subassembly can be configured to accommodate any of a variety of different system communication methods and other input/output options by selecting and inserting the appropriate interface module.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 15, 2016
    Applicant: Nidec Motor Corporation
    Inventors: Prakash B. Shahi, Anandan C. Velayutham, Douglas D. Glenn, Christopher D. Schock, James L. Skinner, Randy L. Bomkamp, Mark E. Carrier
  • Publication number: 20160099672
    Abstract: An electric motor system having substantially independent hardware-based and software-based pathways for detecting and initiating responses to fault conditions, such as over-current conditions, in an electric motor which is powered by a power inverter which is controlled by a power module and a microprocessor. Each pathway involves comparing a voltage, which is representative of an electric current flowing to the motor, to a predetermined maximum voltage, and if the former exceeds the latter using hardware or software to initiate shutting off the motor, such as by shutting off the power inverter. When one pathway detects a fault condition it may notify the other pathway, and the notified pathway may also initiate shutting off the motor.
    Type: Application
    Filed: December 11, 2015
    Publication date: April 7, 2016
    Applicant: Nidec Motor Corporation
    Inventors: Douglas D. Glenn, Christopher D. Schock
  • Publication number: 20160065103
    Abstract: A system for protecting an inrush resistor by determining whether an inrush relay connected in parallel with the resistor properly closes. A differential amplifier connected across the resistor produces an output signal that is proportional to the differential voltage. A control block determines whether the relay is open based on the output signal, and if the relay is open and the motor is running, takes remedial action to protect the inrush resistor. Alternatively, the amplifier is replaced with a slow response filter that produces an output signal that is a delayed version of a bus voltage. The control block determines the difference between the bus voltage and the output signal, and if it exceeds a predetermined value and the motor is running, takes remedial action to protect the inrush resistor. Remedial action may include shutting off the motor or restarting the motor to confirm improper behavior of the relay.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 3, 2016
    Applicant: NIDEC MOTOR CORPORATION
    Inventors: Douglas D. Glenn, Donald R. Mertens
  • Publication number: 20160020716
    Abstract: A motor control system for adjusting motor speed if a current overload condition occurs. The motor control system may include a motor, a power factor correction (PFC) circuit providing current to the motor, and a signal processor. The PFC circuit may limit current provided to the motor based on an output voltage sensed by the PFC circuit. The signal processor may sense input voltage of the PFC circuit to determine a power limit, then compare sensed or calculated drive power of the motor with the power limit. If the drive power sensed or calculated is greater than the power limit, the signal processor may output a signal for reducing the drive power to the power limit. Limiting the drive power provided to the motor limits or decreases a speed of the motor.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 21, 2016
    Applicant: NIDEC MOTOR CORPORATION
    Inventors: James L. Skinner, Prakash B. Shahi, Bret S. Clark, Douglas D. Glenn, Christopher D. Schock
  • Publication number: 20150381094
    Abstract: An electric motor system having substantially independent hardware-based and software-based pathways for detecting and initiating responses to fault conditions, such as over-current conditions, in an electric motor which is powered by a power inverter which is controlled by a power module and a microprocessor. Each pathway involves comparing a voltage, which is representative of an electric current flowing to the motor, to a predetermined maximum voltage, and if the former exceeds the latter using hardware or software to initiate shutting off the motor, such as by shutting off the power inverter. When one pathway detects a fault condition it may notify the other pathway, and the notified pathway may also initiate shutting off the motor.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 31, 2015
    Inventors: Douglas D. Glenn, Christopher D. Schock
  • Patent number: 9214885
    Abstract: An electric motor system having substantially independent hardware-based and software-based pathways for detecting and initiating responses to fault conditions, such as over-current conditions, in an electric motor which is powered by a power inverter which is controlled by a power module and a microprocessor. Each pathway involves comparing a voltage, which is representative of an electric current flowing to the motor, to a predetermined maximum voltage, and if the former exceeds the latter using hardware or software to initiate shutting off the motor, such as by shutting off the power inverter. When one pathway detects a fault condition it may notify the other pathway, and the notified pathway may also initiate shutting off the motor.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: December 15, 2015
    Assignee: NIDEC MOTOR CORPORATION
    Inventors: Douglas D. Glenn, Christopher D. Schock