Patents by Inventor Douglas E. Holmgren

Douglas E. Holmgren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230221521
    Abstract: Embodiments of the present disclosure relate to mount apparatuses for digital micromirror devices of digital lithography systems and methods of mounting the digital micromirror devices. The mount apparatuses described herein retain spatial light modulators, such as DMDs. The mount apparatus enables the flattening of the DMD by providing a force such that the pair of contact pads contact the DMD. The DMD is positioned in a mounting frame of the mount apparatus. Contact pads of the mounting frame are operable to apply pressure to the DMD.
    Type: Application
    Filed: September 10, 2021
    Publication date: July 13, 2023
    Inventors: Timothy N. THOMAS, Robert Jordan LEAR, Douglas E. HOLMGREN, Assaf KIDRON, Nigel SWEHLA
  • Patent number: 11171023
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber may include a substrate support, a first plurality of heating elements disposed over the substrate support, and one or more high-energy radiant source assemblies disposed over the first plurality of heating elements. The one or more high-energy radiant source assemblies are utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: November 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Schubert S. Chu, Douglas E. Holmgren, Kartik Shah, Palamurali Gajendra, Nyi O. Myo, Preetham Rao, Kevin Joseph Bautista, Zhiyuan Ye, Martin A. Hilkene, Errol Antonio C. Sanchez, Richard O. Collins
  • Patent number: 10537965
    Abstract: Embodiments described herein relate to the rapid thermal processing of substrates. A fiber coupled laser diode array is provided in an optical system configured to generate a uniform irradiance pattern on the surface of a substrate. A plurality of individually controllable laser diodes are optically coupled via a plurality of fibers to one or more lenses. The fiber coupled laser diode array generates a Gaussian radiation profile which is defocused by the lenses to generate a uniform intensity image. In one embodiment, a field stop is disposed within the optical system.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: January 21, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Douglas E. Holmgren, Samuel C. Howells, Aaron Muir Hunter, Theodore P. Moffitt, Diwakar N. Kedlaya
  • Patent number: 10444522
    Abstract: Embodiments of the invention generally relate to laser annealing systems with optics for imaging a pattern on a substrate. The optics may comprise an aperture or plurality of apertures which shape an image to be exposed on a surface of a substrate. The image may be determined by the shape of an aperture within the optics system.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: October 15, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Douglas E. Holmgren
  • Patent number: 10181409
    Abstract: An optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. An energy source for the optical system is typically a plurality of lasers, which are combined to form the energy field.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: January 15, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Stephen Moffatt, Douglas E. Holmgren, Samuel C. Howells, Edric Tong, Bruce E. Adams, Jiping Li, Aaron Muir Hunter
  • Patent number: 9927622
    Abstract: Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: March 27, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Stephen Moffatt, Douglas E. Holmgren, Samuel C. Howells, Edric Tong, Bruce E. Adams, Jiping Li, Aaron Muir Hunter
  • Publication number: 20170148726
    Abstract: A semiconductor processing method and semiconductor device are described. The processing method includes forming a p-doped germanium structure on a substrate, annealing the p-doped germanium structure using pulses of laser radiation, and forming a titanium structure in direct contact with the p-doped germanium structure.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 25, 2017
    Inventors: Stephen MOFFATT, Abhilash J. MAYUR, Theodore P. MOFFITT, Aaron Muir HUNTER, Shashank SHARMA, Bruce E. ADAMS, Samuel C. HOWELLS, Douglas E. HOLMGREN, Wolfgang R. ADERHOLD
  • Patent number: 9636778
    Abstract: Embodiments of the present disclosure relate to an apparatus for thermally processing a semiconductor substrate. In one embodiment, the apparatus includes a substrate support, a beam source having a fast axis for emitting a beam along an optical path intersecting the substrate support, and a homogenizer disposed along the optical path between the beam source and the substrate support. The homogenizer comprises a first lens array, and a second lens array, wherein lenses of the second lens array have a larger lenslet array spacing than lenses of the first lens array.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: May 2, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Douglas E. Holmgren, Samuel C. Howells
  • Publication number: 20170103907
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber may include a substrate support, a first plurality of heating elements disposed over the substrate support, and one or more high-energy radiant source assemblies disposed over the first plurality of heating elements. The one or more high-energy radiant source assemblies are utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
    Type: Application
    Filed: October 7, 2016
    Publication date: April 13, 2017
    Inventors: Schubert S. CHU, Douglas E. HOLMGREN, Kartik SHAH, Palamurali GAJENDRA, Nyi O. MYO, Preetham RAO, Kevin Joseph BAUTISTA, Zhiyuan YE, Martin A. HILKENE, Errol Antonio C. SANCHEZ, Richard O. COLLINS
  • Publication number: 20160327801
    Abstract: Embodiments of the invention generally relate to laser annealing systems with optics for imaging a pattern on a substrate. The optics may comprise an aperture or plurality of apertures which shape an image to be exposed on a surface of a substrate. The image may be determined by the shape of an aperture within the optics system.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventor: Douglas E. HOLMGREN
  • Patent number: 9395545
    Abstract: Embodiments of the invention generally relate to laser annealing systems with optics for imaging a pattern on a substrate. The optics may comprise an aperture or plurality of apertures which shape an image to be exposed on a surface of a substrate. The image may be determined by the shape of an aperture within the optics system.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: July 19, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Douglas E. Holmgren
  • Publication number: 20160139417
    Abstract: Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: Stephen Moffatt, Douglas E. Holmgren, Samuel C. Howells, Edric Tong, Bruce E. Adams, Jiping Li, Aaron Muir Hunter
  • Patent number: 9285595
    Abstract: Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: March 15, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Stephen Moffatt, Douglas E. Holmgren, Samuel C. Howells, Edric Tong, Bruce E. Adams, Jiping Li, Aaron Muir Hunter
  • Publication number: 20160020117
    Abstract: Apparatus, system, and method for thermally treating a substrate. A source of pulsed electromagnetic energy can produce pulses at a rate of at least 100 Hz. A movable substrate support can move a substrate relative to the pulses of electromagnetic energy. An optical system can be disposed between the energy source and the movable substrate support, and can include components to shape the pulses of electromagnetic energy toward a rectangular profile. A controller can command the source of electromagnetic energy to produce pulses of energy at a selected pulse rate. The controller can also command the movable substrate support to scan in a direction parallel to a selected edge of the rectangular profile at a selected speed such that every point along a line parallel to the selected edge receives a predetermined number of pulses of electromagnetic energy.
    Type: Application
    Filed: July 21, 2015
    Publication date: January 21, 2016
    Inventors: Aaron Muir HUNTER, Amikam SADE, Samuel C. HOWELLS, Douglas E. HOLMGREN, Bruce E. ADAMS, Theodore P. MOFFITT, Stephen MOFFATT
  • Patent number: 9146337
    Abstract: Embodiments described herein relate to thermal processing of semiconductor substrates. More specifically, embodiments described herein relate to laser thermal processing of semiconductor substrates. In certain embodiments, a uniformizer is provided to spatially and temporally decorrelate a coherent light image.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 29, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jiping Li, Aaron Muir Hunter, Bruce E. Adams, Douglas E. Holmgren, Samuel C. Howells, Theodore P. Moffitt, Stephen Moffatt
  • Publication number: 20150165551
    Abstract: Embodiments described herein relate to the rapid thermal processing of substrates. A fiber coupled laser diode array is provided in an optical system configured to generate a uniform irradiance pattern on the surface of a substrate. A plurality of individually controllable laser diodes are optically coupled via a plurality of fibers to one or more lenses. The fiber coupled laser diode array generates a Gaussian radiation profile which is defocused by the lenses to generate a uniform intensity image. In one embodiment, a field stop is disposed within the optical system.
    Type: Application
    Filed: February 4, 2014
    Publication date: June 18, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Douglas E. HOLMGREN, Samuel C. HOWELLS, Aaron Muir HUNTER, Theodore P. MOFFITT, Diwakar N. KEDLAYA
  • Publication number: 20150136755
    Abstract: Embodiments of the present disclosure relate to an apparatus for thermally processing a semiconductor substrate. In one embodiment, the apparatus includes a substrate support, a beam source having a fast axis for emitting a beam along an optical path intersecting the substrate support, and a homogenizer disposed along the optical path between the beam source and the substrate support. The homogenizer comprises a first lens array, and a second lens array, wherein lenses of the second lens array have a larger lenslet array spacing than lenses of the first lens array.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 21, 2015
    Inventors: Douglas E. HOLMGREN, Samuel C. HOWELLS
  • Publication number: 20150124329
    Abstract: Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Stephen MOFFATT, Douglas E. HOLMGREN, Samuel C. HOWELLS, Edric TONG, Bruce E. ADAMS, Jiping LI, Aaron Muir HUNTER
  • Patent number: 8970963
    Abstract: Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Stephen Moffatt, Douglas E. Holmgren, Samuel C. Howells, Edric Tong, Bruce E. Adams, Jiping Li, Aaron Muir Hunter
  • Patent number: 8946594
    Abstract: Embodiments of the invention provide an apparatus including a substrate support, a source of laser radiation emitting laser radiation along an optical path, and an illumination optics disposed along the optical path. The illumination optics includes a set of slow-axis and fast-axis lenses. The apparatus further includes a homogenizer disposed between of the illumination optics and the substrate support along the optical path. The homogenizer includes a first and a second micro-optic lenslet arrays of cylindrical lenses, wherein the second micro-optic lenslet array of cylindrical lenses has a relatively larger lenslet pitch than that of the first micro-optic lenslet array of cylindrical lenses, and lenslet axes of the first micro-optic lenslet array and lenslet axes of the second micro-optic lenslet array are oriented along an axis that is parallel to a fast axis of the source of laser radiation.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: February 3, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Douglas E. Holmgren, Samuel C. Howells